模拟退火算法python代码库
时间: 2024-01-20 19:16:57 浏览: 138
模拟退火算法Python实现.zip
模拟退火算法是一种全局优化算法,用于在搜索空间中寻找最优解。下面是一个使用Python实现模拟退火算法的代码库示例:
```python
import math
import random
def simulated_annealing(initial_state, cost_function, temperature, cooling_rate, stopping_temperature):
current_state = initial_state
current_cost = cost_function(current_state)
best_state = current_state
best_cost = current_cost
while temperature > stopping_temperature:
new_state = generate_neighbor(current_state)
new_cost = cost_function(new_state)
delta_cost = new_cost - current_cost
if delta_cost < 0 or random.random() < math.exp(-delta_cost / temperature):
current_state = new_state
current_cost = new_cost
if current_cost < best_cost:
best_state = current_state
best_cost = current_cost
temperature *= cooling_rate
return best_state, best_cost
def generate_neighbor(state):
# 生成邻居状态的函数
# 在这里实现生成邻居状态的逻辑
pass
def cost_function(state):
# 计算状态的成本函数
# 在这里实现计算成本函数的逻辑
pass
# 使用示例
initial_state = # 设置初始状态
temperature = # 设置初始温度
cooling_rate = # 设置冷却速率
stopping_temperature = # 设置停止温度
best_state, best_cost = simulated_annealing(initial_state, cost_function, temperature, cooling_rate, stopping_temperature)
print("Best state:", best_state)
print("Best cost:", best_cost)
```
你可以根据你的具体问题来实现`generate_neighbor`和`cost_function`函数。`generate_neighbor`函数用于生成邻居状态,而`cost_function`函数用于计算状态的成本。在使用时,你需要根据你的问题设置初始状态、初始温度、冷却速率和停止温度。
阅读全文