模拟退火的算法Python
时间: 2023-11-05 21:54:37 浏览: 155
模拟退火算法是一种基于Monte-Carlo迭代求解策略的随机寻优算法。它主要用于解决组合优化问题。在Python中,可以使用以下代码实现模拟退火算法:
```
# 导入依赖库
import random
import math
# 定义目标函数
def objective_function(x):
# 计算目标函数的值
...
# 定义模拟退火算法
def simulated_annealing():
# 初始化当前解和当前目标函数值
current_solution = ...
current_objective = objective_function(current_solution)
# 初始化最优解和最优目标函数值
best_solution = current_solution
best_objective = current_objective
# 设定初始温度和终止温度
initial_temperature = ...
final_temperature = ...
# 设定退火速率
cooling_rate = ...
# 迭代搜索
while current_temperature > final_temperature:
# 生成新解
new_solution = ...
# 计算新解的目标函数值
new_objective = objective_function(new_solution)
# 判断是否接受新解
if new_objective < current_objective:
current_solution = new_solution
current_objective = new_objective
else:
probability = math.exp((current_objective - new_objective) / current_temperature)
if random.random() < probability:
current_solution = new_solution
current_objective = new_objective
# 更新最优解和最优目标函数值
if current_objective < best_objective:
best_solution = current_solution
best_objective = current_objective
# 降低温度
current_temperature *= cooling_rate
# 返回最优解和最优目标函数值
return best_solution, best_objective
# 调用模拟退火算法
best_solution, best_objective = simulated_annealing()
```
阅读全文