帮我写一个python脚本 使用yolov8模型自动标注labelme 的json文件
时间: 2024-09-21 13:03:42 浏览: 39
如何批量转换json文件.zip
当然可以,首先你需要安装必要的库,如`yolov5`, `pycocotools`等。以下是一个简单的Python脚本示例,用于读取LabelMe JSON文件并使用YOLOv8模型进行物体检测,然后将检测结果添加到原始JSON中:
```python
import json
from PIL import Image
import requests
from io import BytesIO
from pycocotools.coco import COCO
from yolov5.yolov5 import YOLOv5
# 首先安装YOLOv5(如果还没有安装)
!pip install -qr https://raw.githubusercontent.com/ultralytics/yolov5/master/requirements.txt
# 初始化YOLOv5模型
model = YOLOv5('yolov8') # 指定YOLOv8模型路径,例如'yolov8.pt'
def detect_labels_from_json(json_path):
with open(json_path) as f:
data = json.load(f)
annotations = []
for img in data['images']:
img_path = img['file_name']
# 下载图片
response = requests.get(img_path)
img_data = BytesIO(response.content)
image = Image.open(img_data).convert('RGB')
# 进行预测
results = model.detect(image=image)
# 将预测结果转换为LabelMe格式的注释
bboxes = [r['bbox'] + [img['width'], img['height']] for r in results]
labels = [r['class'] for r in results]
# 创建新的annots对象
annots = [{'image_id': img['id'], 'bbox': bbox.tolist(), 'category_id': label} for bbox, label in zip(bboxes, labels)]
# 添加到原有数据中
data['annotations'].extend(annots)
# 保存更新后的JSON文件
new_json_path = "annotated_" + json_path
with open(new_json_path, 'w') as f:
json.dump(data, f, indent=2)
print(f"Annotations saved to {new_json_path}")
# 替换为你实际的LabelMe JSON文件路径
json_file = 'path_to_your_labelme_json.json'
detect_labels_from_json(json_file)
阅读全文