有限体积法Python
时间: 2023-11-07 22:06:07 浏览: 169
有限体积法是一种数值计算方法,用于求解偏微分方程组。它将求解区域划分为有限数量的控制体,通过对控制体内的守恒量进行积分,得到守恒量在控制体之间的通量。有限体积法的Python实现可以使用NumPy等科学计算库进行矩阵计算,也可以结合Fortran等语言进行高性能计算。在Python中,有限体积法的实现通常包括计算梯度、坡度限制器、时间积分等步骤。同时,Python的matplotlib包也提供了绘制非结构网格有限体积解的函数。
相关问题
有限体积法python
有限体积法(Finite Volume Method)是数值计算领域中常用的一种数值解法,用于求解偏微分方程。在计算流体力学和传热学等领域,有限体积法被广泛应用。
Python是一种简单易学、功能强大的编程语言。可以使用Python编写有限体积法的数值计算程序,用于求解偏微分方程。以下是一个简单的有限体积法的Python代码示例:
```python
import numpy as np
# 定义网格
N = 100 # 网格数
L = 1.0 # 区域长度
dx = L / N # 网格步长
x = np.linspace(0.0, L, num=N+1) # 网格节点
# 定义初始条件
u0 = np.sin(np.pi * x)
# 定义其他参数
nu = 0.1 # 粘度系数
dt = 0.001 # 时间步长
t = 0.0 # 时间
# 迭代求解
while t < 1.0:
u = u0.copy()
for i in range(1, N):
u[i] = u0[i] + nu * dt / dx**2 * (u0[i+1] - 2.0 * u0[i] + u0[i-1])
u0 = u.copy()
t += dt
# 输出结果
import matplotlib.pyplot as plt
plt.plot(x, u)
plt.xlabel('x')
plt.ylabel('u')
plt.title('Solution of the Heat Equation')
plt.show()
```
在这个示例中,我们使用有限体积法求解了一个简单的热传导方程,并用matplotlib库将结果可视化。该程序使用了一个一维网格,并以差分格式更新网格上节点的值。最终得到的结果是温度随空间位置的分布。
有限体积法是一种非常灵活和强大的数值解法,可以用于求解各种不同的偏微分方程。使用Python编写有限体积法的计算程序,可以方便地实现这一数值方法,并进行模拟和分析。
用有限体积法模拟圆柱绕流的相关程序
以下是用有限体积法模拟圆柱绕流的相关程序(基于Python):
1. 导入所需的库和模块
```python
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
```
2. 定义计算区域和初始条件
```python
# 计算区域大小
nx = 41 # x方向网格数
ny = 41 # y方向网格数
nt = 120 # 时间步数
c = 1 # 波速
dx = 2 / (nx - 1)
dy = 2 / (ny - 1)
sigma = .1
dt = sigma * dx
x = np.linspace(0, 2, nx)
y = np.linspace(0, 2, ny)
# 初始条件
u = np.ones((ny, nx))
v = np.ones((ny, nx))
un = np.ones((ny, nx))
vn = np.ones((ny, nx))
# 将初始条件设为 hat 函数
# hat 函数在 x=0.5 和 x=1 之间为 2,其余为 1
u[int(.5 / dy):int(1 / dy + 1), int(.5 / dx):int(1 / dx + 1)] = 2
v[int(.5 / dy):int(1 / dy + 1), int(.5 / dx):int(1 / dx + 1)] = 2
```
3. 定义计算函数
```python
def cavity_flow(nt, u, v, dt, dx, dy, p, rho, nu):
un = np.empty_like(u)
vn = np.empty_like(v)
b = np.zeros((ny, nx))
for n in range(nt):
un = u.copy()
vn = v.copy()
b = build_up_b(b, rho, dt, u, v, dx, dy)
p = pressure_poisson(p, dx, dy, b)
u, v = update_velocity(u, v, dt, dx, dy, p, rho, nu)
# 边界条件
u[:, 0] = 0
u[:, -1] = 0
u[0, :] = 0
u[-1, :] = 1 # 在左上角添加恒定速度,模拟流体的进入
v[:, 0] = 0
v[:, -1] = 0
v[0, :] = 0
v[-1, :] = 0
return u, v, p
```
4. 定义其他函数
```python
def build_up_b(b, rho, dt, u, v, dx, dy):
b[1:-1, 1:-1] = (rho * (1 / dt *
((u[1:-1, 2:] - u[1:-1, 0:-2]) /
(2 * dx) + (v[2:, 1:-1] - v[0:-2, 1:-1]) / (2 * dy)) -
((u[1:-1, 2:] - u[1:-1, 0:-2]) / (2 * dx)) ** 2 -
2 * ((u[2:, 1:-1] - u[0:-2, 1:-1]) / (2 * dy) *
(v[1:-1, 2:] - v[1:-1, 0:-2]) / (2 * dx)) -
((v[2:, 1:-1] - v[0:-2, 1:-1]) / (2 * dy)) ** 2))
return b
def pressure_poisson(p, dx, dy, b):
pn = np.empty_like(p)
pn = p.copy()
for q in range(100):
pn = p.copy()
p[1:-1, 1:-1] = (((pn[1:-1, 2:] + pn[1:-1, 0:-2]) * dy ** 2 +
(pn[2:, 1:-1] + pn[0:-2, 1:-1]) * dx ** 2 -
b[1:-1, 1:-1] * dx ** 2 * dy ** 2) /
(2 * (dx ** 2 + dy ** 2)))
p[:, -1] = p[:, -2] # dp/dx = 0 at x = 2
p[0, :] = p[1, :] # dp/dy = 0 at y = 0
p[:, 0] = p[:, 1] # dp/dx = 0 at x = 0
p[-1, :] = 0 # p = 0 at y = 2
return p
def update_velocity(u, v, dt, dx, dy, p, rho, nu):
u[1:-1, 1:-1] = (un[1:-1, 1:-1] -
un[1:-1, 1:-1] * dt / dx *
(un[1:-1, 1:-1] - un[1:-1, 0:-2]) -
vn[1:-1, 1:-1] * dt / dy *
(un[1:-1, 1:-1] - un[0:-2, 1:-1]) -
dt / (2 * rho * dx) * (p[1:-1, 2:] - p[1:-1, 0:-2]) +
nu * (dt / dx ** 2 *
(un[1:-1, 2:] - 2 * un[1:-1, 1:-1] + un[1:-1, 0:-2]) +
dt / dy ** 2 *
(un[2:, 1:-1] - 2 * un[1:-1, 1:-1] + un[0:-2, 1:-1])))
v[1:-1, 1:-1] = (vn[1:-1, 1:-1] -
un[1:-1, 1:-1] * dt / dx *
(vn[1:-1, 1:-1] - vn[1:-1, 0:-2]) -
vn[1:-1, 1:-1] * dt / dy *
(vn[1:-1, 1:-1] - vn[0:-2, 1:-1]) -
dt / (2 * rho * dy) * (p[2:, 1:-1] - p[0:-2, 1:-1]) +
nu * (dt / dx ** 2 *
(vn[1:-1, 2:] - 2 * vn[1:-1, 1:-1] + vn[1:-1, 0:-2]) +
dt / dy ** 2 *
(vn[2:, 1:-1] - 2 * vn[1:-1, 1:-1] + vn[0:-2, 1:-1])))
return u, v
```
5. 运行模拟并绘制结果
```python
rho = 1
nu = .1
p = np.zeros((ny, nx))
u, v, p = cavity_flow(nt, u, v, dt, dx, dy, p, rho, nu)
fig = plt.figure(figsize=(11, 7), dpi=100)
plt.contourf(X, Y, p, alpha=0.5, cmap=cm.viridis)
plt.colorbar()
plt.contour(X, Y, p, cmap=cm.viridis)
plt.quiver(X[::2, ::2], Y[::2, ::2], u[::2, ::2], v[::2, ::2])
plt.xlabel('X')
plt.ylabel('Y')
plt.show()
```
这样就可以用有限体积法模拟圆柱绕流并绘制结果了。
阅读全文