cond.wait(&mutex, 1000);

时间: 2024-04-18 11:28:59 浏览: 7
`cond.wait(&mutex, 1000)` 是一个线程等待的操作。 在多线程编程中,条件变量(`QWaitCondition`)和互斥锁(`QMutex`)通常一起使用。条件变量用于在线程之间进行通信和同步,而互斥锁用于保护共享资源的访问。 在这个代码片段中,`cond` 是一个 `QWaitCondition` 对象,`mutex` 是一个 `QMutex` 对象。`cond.wait(&mutex, 1000)` 表示当前线程会等待,直到满足特定条件,并且最长等待时间为 1000 毫秒(1 秒)。 在调用 `cond.wait()` 之前,通常需要获取互斥锁,以确保在等待期间其他线程不会修改条件。因此,在这里使用 `&mutex` 将互斥锁传递给 `wait()` 方法。 当满足特定条件时,或者等待时间超过指定的时间时,线程将从 `cond.wait()` 返回,并继续执行后续的代码。 需要注意的是,这是一个简化的示例代码,实际应用中可能还需要进行其他的条件判断和处理。
相关问题

详细解释一下pthread_cond_wait(&cond, &mutex);

)函数用法。 好的,我会为您解释pthread_cond_wait()函数的用法。pthread_cond_wait()函数是一个阻塞函数,用于条件变量的等待。当线程执行到pthread_cond_wait()函数时,该线程会被阻塞,直到另一个线程使用pthread_cond_signal()函数或pthread_cond_broadcast()函数来发送信号并唤醒等待的线程。在等待期间,pthread_cond_wait()函数会释放互斥锁,以便其他线程可以访问共享资源。当一个线程被唤醒后,它会重新锁定互斥锁并继续执行pthread_cond_wait()函数之后的代码。 需要指出的是,pthread_cond_wait()函数必须在互斥锁保护之内调用,并且必须与同一个条件变量一起使用。否则,线程可能会在另一个条件变量上等待或在没有保护的情况下调用线程库中的其他函数。

while (shared_data.value == 0) { pthread_cond_wait(&shared_data.cond, &shared_data.mutex); }

这段代码是一个等待线程,在共享数据值为0的情况下,等待条件变量被唤醒。在等待之前需要先通过pthread_mutex_lock函数获取互斥锁,确保多个线程不会同时访问共享数据。然后,通过pthread_cond_wait函数对条件变量进行等待,此时线程会被阻塞并进入等待状态,直到条件变量被唤醒。在等待结束后,需要再次通过pthread_mutex_lock函数获取互斥锁,以确保对共享数据的访问是互斥的。最后,线程可以开始访问共享数据并进行相应的操作。

相关推荐

分析下面代码的每一步功能:#include <stdio.h> #include #define QUEUE_SIZE 20 #define THREAD_NUM 10 #define MAX_NUM 30000200 #define MIN_NUM 30000000 int queue[QUEUE_SIZE]; int front = 0; int rear = 0; int finished = 0; pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER; pthread_cond_t cond = PTHREAD_COND_INITIALIZER; int is_prime(int num) { int i; if (num <= 1) { return 0; } for (i = 2; i * i <= num; i++) { if (num % i == 0) { return 0; } } return 1; } // 子线程函数 void *thread_func(void arg) { int thread_num = (int)arg; while (1) { pthread_mutex_lock(&mutex); while (front == rear && finished == 0) { pthread_cond_wait(&cond, &mutex); } if (front == rear && finished == 1) { pthread_mutex_unlock(&mutex); break; } int num = queue[front++]; if (front == QUEUE_SIZE) { front = 0; } pthread_mutex_unlock(&mutex); if (is_prime(num)) { printf("Thread %d: %d\n", thread_num, num); } } pthread_exit(NULL); } int main() { int i, j; pthread_t tids[THREAD_NUM]; int thread_num[THREAD_NUM]; for (i = 0; i < THREAD_NUM; i++) { thread_num[i] = i; pthread_create(&tids[i], NULL, thread_func, (void)&thread_num[i]); } for (i = MIN_NUM; i <= MAX_NUM; ) { pthread_mutex_lock(&mutex); if ((rear + 1) % QUEUE_SIZE == front) { pthread_cond_signal(&cond); pthread_mutex_unlock(&mutex); continue; } queue[rear++] = i++; if (rear == QUEUE_SIZE) { rear = 0; } pthread_cond_signal(&cond); pthread_mutex_unlock(&mutex); } pthread_mutex_lock(&mutex); finished = 1; pthread_cond_broadcast(&cond); pthread_mutex_unlock(&mutex); for (i = 0; i < THREAD_NUM; i++) { pthread_join(tids[i], NULL); } return 0; }

#include <stdio.h> #include <stdlib.h> #include #include <windows.h> typedef struct QueueNode { int id; struct QueueNode* next; }QueueNode; typedef struct TaskQueue { QueueNode* front; QueueNode* rear; }TaskQueue; int InitQueue(TaskQueue* Qp) { Qp->rear = Qp->front = (QueueNode*)malloc(sizeof(QueueNode)); Qp->front->id = 2018; Qp->front->next = NULL; return 1; } int EnQueue(TaskQueue* Qp, int e) { QueueNode* newnode = (QueueNode*)malloc(sizeof(QueueNode)); if (newnode == NULL) return 0; newnode->id = e; newnode->next = NULL; Qp->rear->next = newnode; Qp->rear = newnode; return 1; } int DeQueue(TaskQueue* Qp, int* ep, int threadID) { QueueNode* deletenode; if (Qp->rear == Qp->front) return 0; deletenode = Qp->front->next; if (deletenode == NULL) { return 0; } *ep = deletenode->id; Qp->front->next = deletenode->next; free(deletenode); return 1; } int GetNextTask(); int thread_count, finished = 0; pthread_mutex_t mutex, mutex2; pthread_cond_t cond; void* task(void* rank); TaskQueue Q; int main() { int n; InitQueue(&Q); pthread_t* thread_handles; thread_count = 8; thread_handles = malloc(thread_count * sizeof(pthread_t)); pthread_mutex_init(&mutex, NULL); pthread_mutex_init(&mutex2, NULL); pthread_cond_init(&cond, NULL); printf("Task Number:"); scanf_s("%d", &n); for (int i = 0; i < thread_count; i++) pthread_create(&thread_handles[i], NULL, task, (void*)i); for (int i = 0; i < n; i++) { pthread_mutex_lock(&mutex2); EnQueue(&Q, i); Sleep(1); pthread_cond_signal(&cond); pthread_mutex_unlock(&mutex2); } finished = 1; pthread_cond_broadcast(&cond); for (int i = 0; i < thread_count; i++) pthread_join(thread_handles[i], NULL); pthread_mutex_destroy(&mutex); pthread_cond_destroy(&cond); free(thread_handles); return 0; } void* task(void* rank) { int my_rank = (long)rank; int my_task; QueueNode** p = &(Q.front->next); while (1) { pthread_mutex_lock(&mutex2); if (finished) { if (*p == NULL) { pthread_mutex_unlock(&mutex2); break; } DeQueue(&Q, &my_task, my_rank); pthread_mutex_unlock(&mutex2); printf("From thread %ld: Task no.%-3d result->%5d\n", my_rank, my_task, my_task * 10); } else { while(pthread_cond_wait(&cond, &mutex2)!=0); //pthread_mutex_lock(&mutex2); DeQueue(&Q, &my_task, my_rank); pthread_mutex_unlock(&mutex2); Sleep(2); printf("From thread %ld: Task no.%-3d result->%5d\n", my_rank, my_task, my_task * 10); } } } 该代码在运行中可能遇到什么问题

最新推荐

recommend-type

基于springboot开发的前后端分离的简易进销存后台管理系统.zip

基于springboot的java毕业&课程设计
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

SQL怎么实现 数据透视表

SQL可以通过使用聚合函数和GROUP BY子句来实现数据透视表。 例如,假设有一个销售记录表,其中包含产品名称、销售日期、销售数量和销售额等信息。要创建一个按照产品名称、销售日期和销售额进行汇总的数据透视表,可以使用以下SQL语句: ``` SELECT ProductName, SaleDate, SUM(SaleQuantity) AS TotalQuantity, SUM(SaleAmount) AS TotalAmount FROM Sales GROUP BY ProductName, SaleDate; ``` 该语句将Sales表按照ProductName和SaleDat
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

使用vue3+elementsplus封装一个提示确认框的组件,要求将请求地址和确认框展示信息作为参数暴露出去

好的,下面是使用 Vue3 和 ElementPlus 封装一个提示确认框的组件,同时将请求地址和确认框展示信息作为参数暴露出去。 ```vue <template> <el-dialog title="确认提示" :visible.sync="dialogVisible" width="30%" :before-close="handleClose" > <p>{{ message }}</p> <span slot="footer" class="dialog-footer"> <el-button @click="di
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。