python判别分析费希尔
时间: 2023-11-07 11:05:52 浏览: 125
费希尔判别分析(Fisher's discriminant analysis)是一种经典的线性判别方法,用于解决分类问题。它通过寻找一个投影方向,将数据映射到一条直线或超平面上,使得同类样本的投影点尽可能接近,不同类别样本的投影点尽可能远离。这个投影方向可以最大程度地保留原始数据的类别信息。
在Python中,可以使用scikit-learn库来实现费希尔判别分析。具体步骤如下:
1. 导入必要的库和模块:
```python
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
```
2. 准备数据集,包括特征矩阵X和目标变量y。
3. 创建一个LinearDiscriminantAnalysis对象并拟合数据:
```python
lda = LinearDiscriminantAnalysis()
lda.fit(X, y)
```
4. 使用训练好的模型进行预测:
```python
y_pred = lda.predict(X_test)
```
以上就是在Python中使用费希尔判别分析的基本步骤。你可以根据自己的数据集和需求进行相应的调整和优化。
相关问题
fisher线性判别分析python
Fisher线性判别分析是一种经典的模式识别算法,用于将数据分成两个或多个类别。它的目标是找到一个线性投影,使得不同类别之间的距离最大化,同一类别内部的距离最小化。在Python中,可以使用scikit-learn库中的LinearDiscriminantAnalysis类来实现Fisher线性判别分析。
Fisher 线性判别分析 python模板
以下是 Fisher 线性判别分析的 Python 模板:
```python
import numpy as np
class FisherLDA:
def __init__(self, n_components=None):
self.n_components = n_components
def fit(self, X, y):
n_samples, n_features = X.shape
class_labels = np.unique(y)
# Calculate the mean of each class
mean_vectors = []
for label in class_labels:
mean_vectors.append(np.mean(X[y==label], axis=0))
# Calculate the within-class scatter matrix
S_W = np.zeros((n_features, n_features))
for i, label in enumerate(class_labels):
Xi = X[y==label]
mean_vec = mean_vectors[i]
for x in Xi:
x = x.reshape(n_features, 1)
mean_vec = mean_vec.reshape(n_features, 1)
S_W += (x - mean_vec).dot((x - mean_vec).T)
# Calculate the between-class scatter matrix
overall_mean = np.mean(X, axis=0)
S_B = np.zeros((n_features, n_features))
for i, mean_vec in enumerate(mean_vectors):
n = X[y==class_labels[i]].shape[0]
mean_vec = mean_vec.reshape(n_features, 1)
overall_mean = overall_mean.reshape(n_features, 1)
S_B += n * (mean_vec - overall_mean).dot((mean_vec - overall_mean).T)
# Calculate the eigenvalues and eigenvectors of S_W^-1 * S_B
eigenvalues, eigenvectors = np.linalg.eig(np.linalg.inv(S_W).dot(S_B))
# Sort the eigenvalues in descending order
eigenvectors = eigenvectors.T
idxs = np.argsort(eigenvalues)[::-1]
eigenvalues = eigenvalues[idxs]
eigenvectors = eigenvectors[idxs]
# Select the first n_components eigenvectors
if self.n_components is not None:
eigenvectors = eigenvectors[:self.n_components]
self.eigenvalues = eigenvalues
self.eigenvectors = eigenvectors
def transform(self, X):
return np.dot(X, self.eigenvectors.T)
```
希望对你有所帮助!
阅读全文