class RestNet18(nn.Module): def __init__(self): super(RestNet18, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3) self.bn1 = nn.BatchNorm2d(64) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = nn.Sequential(RestNetBasicBlock(64, 64, 1), RestNetBasicBlock(64, 64, 1)) self.layer2 = nn.Sequential(RestNetDownBlock(64, 128, [2, 1]), RestNetBasicBlock(128, 128, 1)) self.layer3 = nn.Sequential(RestNetDownBlock(128, 256, [2, 1]), RestNetBasicBlock(256, 256, 1)) self.layer4 = nn.Sequential(RestNetDownBlock(256, 512, [2, 1]), RestNetBasicBlock(512, 512, 1)) self.avgpool = nn.AdaptiveAvgPool2d(output_size=(1, 1)) self.fc = nn.Linear(512, 10) def forward(self, x): out = self.conv1(x) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = self.avgpool(out) out = out.reshape(x.shape[0], -1) out = self.fc(out) return out ———————————————— 逐行解释以上代码
时间: 2024-01-07 11:04:00 浏览: 118
这段代码定义了一个名为`RestNet18`的类,它是一个使用ResNet的18层网络模型。下面是对代码的逐行解释:
```python
class RestNet18(nn.Module):
def __init__(self):
super(RestNet18, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3)
self.bn1 = nn.BatchNorm2d(64)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
```
首先定义了一个名为`RestNet18`的类,它继承自`nn.Module`类。在构造函数`__init__`中,定义了卷积层`conv1`,输入通道数为3,输出通道数为64,卷积核大小为7x7,步长为2,填充为3。同时定义了批归一化层`bn1`和最大池化层`maxpool`,池化核大小为3x3,步长为2,填充为1。
```python
self.layer1 = nn.Sequential(RestNetBasicBlock(64, 64, 1),
RestNetBasicBlock(64, 64, 1))
```
接下来定义了`layer1`,它是一个包含两个`RestNetBasicBlock`的序列模块。每个`RestNetBasicBlock`的输入通道数和输出通道数都是64,步长为1。
```python
self.layer2 = nn.Sequential(RestNetDownBlock(64, 128, [2, 1]),
RestNetBasicBlock(128, 128, 1))
```
然后定义了`layer2`,它是一个包含一个`RestNetDownBlock`和一个`RestNetBasicBlock`的序列模块。`RestNetDownBlock`的输入通道数为64,输出通道数为128,步长为[2, 1],而`RestNetBasicBlock`的输入通道数和输出通道数都是128,步长为1。
```python
self.layer3 = nn.Sequential(RestNetDownBlock(128, 256, [2, 1]),
RestNetBasicBlock(256, 256, 1))
```
接下来定义了`layer3`,它是一个包含一个`RestNetDownBlock`和一个`RestNetBasicBlock`的序列模块。`RestNetDownBlock`的输入通道数为128,输出通道数为256,步长为[2, 1],而`RestNetBasicBlock`的输入通道数和输出通道数都是256,步长为1。
```python
self.layer4 = nn.Sequential(RestNetDownBlock(256, 512, [2, 1]),
RestNetBasicBlock(512, 512, 1))
```
然后定义了`layer4`,它是一个包含一个`RestNetDownBlock`和一个`RestNetBasicBlock`的序列模块。`RestNetDownBlock`的输入通道数为256,输出通道数为512,步长为[2, 1],而`RestNetBasicBlock`的输入通道数和输出通道数都是512,步长为1。
```python
self.avgpool = nn.AdaptiveAvgPool2d(output_size=(1, 1))
```
接下来定义了自适应平均池化层`avgpool`,它将输入特征图的大小自适应地池化为大小为1x1。
```python
self.fc = nn.Linear(512, 10)
```
最后定义了全连接层`fc`,将输入特征的维度512映射到10个输出类别。
```python
def forward(self, x):
out = self.conv1(x)
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = self.avgpool(out)
out = out.reshape(x.shape[0], -1)
out = self.fc(out)
return out
```
`forward`方法定义了正向传播过程。给定输入`x`,首先通过卷积层`conv1`进行卷积操作,然后依次经过`layer1`,`layer2`,`layer3`和`layer4`模块进行特征提取。
接下来通过自适应平均池化层`avgpool`对特征图进行池化操作。然后将池化后的特征图展平为一维张量,并通过全连接层`fc`进行分类预测。
最后返回预测结果。
这个网络模型基于ResNet架构,通过堆叠不同的残差块和其他层来构建深层网络,并在最后使用全连接层进行分类预测。它可以用于图像分类任务。
阅读全文