coords = device_df.loc[:, ['loc_y', 'loc_x']].values kms_per_radian = 6371.0088 epsilon = 0.2 / kms_per_radian db = DBSCAN(eps=epsilon, min_samples=1, algorithm='ball_tree', metric='haversine') \ .fit(np.radians(coords))

时间: 2024-04-11 14:32:39 浏览: 23
这段代码针对 `device_df` DataFrame 进行了一些数据处理和使用 DBSCAN 算法进行聚类的操作。 首先,`coords` 被定义为 `device_df` 中的 `'loc_y'` 和 `'loc_x'` 列的值,并通过 `.loc[:, ['loc_y', 'loc_x']]` 进行选择。这将返回一个新的 DataFrame,其中只包含这两列的数据。然后,`.values` 方法被用于将这个 DataFrame 转换为一个 numpy.ndarray。 接下来,`kms_per_radian` 被赋值为 6371.0088,这是一个常数,用于将距离转换为弧度单位。 然后,`epsilon` 被定义为 0.2 除以 `kms_per_radian`。这是 DBSCAN 算法中定义空间可达性的参数。 接着,`db` 被初始化为一个 DBSCAN 对象,其中包括了一些参数设置: - `eps` 设置为 `epsilon`,表示两个点之间的最大距离,超过这个距离则不属于同一个簇。 - `min_samples` 设置为 1,表示一个簇中至少要有多少个样本点。 - `algorithm` 设置为 'ball_tree',表示使用球树算法加速计算。 - `metric` 设置为 'haversine',表示使用哈弗斯因距离作为度量标准。 最后,通过调用 `.fit(np.radians(coords))` 方法,利用经纬度坐标的弧度化版本对 DBSCAN 算法进行训练和拟合。这将生成一个聚类模型,用于对定位点进行空间密度聚类。
相关问题

#使用DBSCAN算法对deviceA的定位点进行空间密度聚类,地理空间相近的定位点会形成一个簇(cluster) coords = device_df.loc[:, ['loc_y', 'loc_x']].values #将device_df中的定位点坐标取出,按numpy.ndarray存储,以作为DBSCAN(...)的输入。注意,纬度在前,经度在后 kms_per_radian = 6371.0088 epsilon = 0.2 / kms_per_radian # 以200米作为定义空间可达性的参数 db = DBSCAN(eps=epsilon, min_samples=1, algorithm='ball_tree', metric='haversine') \ .fit(np.radians(coords)) #以地球球面距离为metric调用DBSCAN算法,经纬度坐标需转为弧度制

这段代码使用了 DBSCAN(Density-Based Spatial Clustering of Applications with Noise)算法对 `device_df` 中的定位点进行空间密度聚类。 首先,`coords` 被定义为 `device_df` 中的 `'loc_y'` 和 `'loc_x'` 列的值,以 numpy.ndarray 的形式存储。注意,纬度在前,经度在后。 然后,`kms_per_radian` 被赋值为地球上每弧度的距离。这是一个常数,用于将距离转换为弧度单位。 接下来,`epsilon` 被定义为 0.2 千米除以 `kms_per_radian`,即以 200 米作为定义空间可达性的参数。 然后,`db` 被初始化为一个 DBSCAN 对象,使用球树算法(ball_tree)和哈弗斯因距离(haversine)作为度量标准。然后,该对象被应用于经纬度坐标的弧度化版本 `np.radians(coords)`。 最终,DBSCAN 算法将根据指定的参数对定位点进行聚类,并返回一个 `labels_` 属性,表示每个点所属的簇。

relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]

这行代码是在计算每个点与其他点之间的相对位置坐标。具体来说,`coords_flatten`是一个二维数组,每一行表示一个点在二维平面上的坐标,第一个维度表示点的数量,第二个维度表示坐标的维度(这里是2)。 `coords_flatten[:, :, None]`是将`coords_flatten`数组的第二个维度扩展一维,变成一个三维数组,维度分别为`(点数, 2, 1)`。这个操作的目的是方便后面的广播运算。 `coords_flatten[:, None, :]`是将`coords_flatten`数组的第一个维度扩展一维,变成一个三维数组,维度分别为`(1, 点数, 2)`。同样,这个操作的目的也是为了方便后面的广播运算。 接下来进行的操作是二者的广播运算,将两个三维数组广播成一个三维数组,维度为`(点数, 点数, 2)`。广播的过程中,numpy将第一个数组的第二个维度扩展为2,将第二个数组的第一个维度扩展为点数,再将两个数组按元素相减,得到一个新的数组,表示每个点与其他点之间的相对坐标。 最终得到的`relative_coords`数组的形状为`(点数, 点数, 2)`,其中`relative_coords[i, j]`表示第i个点与第j个点之间的相对坐标。

相关推荐

import pandas as pd import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.basemap import Basemap from scipy.spatial.distance import cdist from ant_colony import solve_tsp # 读取城市数据 df = pd.read_excel('world_coordinate.xlsx', index_col=0, dtype=str) # 提取城市和经纬度数据 countrys = df.index.values countrys_coords = np.array(df['[longitude, latitude]'].apply(eval).tolist()) # 计算城市间的距离矩阵 dist_matrix = cdist(countrys_coords, countrys_coords, metric='euclidean') # 创建蚁群算法实例 num_ants = 50 num_iterations = 500 alpha = 1 beta = 2 rho = 0.5 acs = solve_tsp(dist_matrix, num_ants=num_ants, num_iterations=num_iterations, alpha=alpha, beta=beta, rho=rho) # 输出访问完所有城市的最短路径的距离和城市序列 best_path = acs.get_best_path() best_distance = acs.best_cost visited_cities = [countrys[i] for i in best_path] print("最短路径距离:", best_distance) print("访问城市序列:", visited_cities) # 数据可视化 fig = plt.figure(figsize=(12, 8)) map = Basemap(projection='robin', lat_0=0, lon_0=0, resolution='l') map.drawcoastlines(color='gray') map.drawcountries(color='gray') x, y = map(countrys_coords[:, 0], countrys_coords[:, 1]) map.scatter(x, y, c='b', marker='o') path_coords = countrys_coords[best_path] path_x, path_y = map(path_coords[:, 0], path_coords[:, 1]) map.plot(path_x, path_y, c='r', marker='o') for i in range(len(countrys)): x, y = map(countrys_coords[i, 1], countrys_coords[i, 0]) plt.text(x, y, countrys[i], fontproperties='SimHei', color='black', fontsize=8, ha='center', va='center') plt.title("全球首都最短路径规划") plt.show()改成现在都有调用蚁群算法库的代码

import pandas as pd import numpy as np from sklearn.cluster import DBSCAN from sklearn import metrics from sklearn.cluster import KMeans import os def dbscan(input_file): ## 纬度在前,经度在后 [latitude, longitude] columns = ['lat', 'lon'] in_df = pd.read_csv(input_file, sep=',', header=None, names=columns) # represent GPS points as (lat, lon) coords = in_df.as_matrix(columns=['lat', 'lon']) # earth's radius in km kms_per_radian = 6371.0086 # define epsilon as 0.5 kilometers, converted to radians for use by haversine # This uses the 'haversine' formula to calculate the great-circle distance between two points # that is, the shortest distance over the earth's surface # http://www.movable-type.co.uk/scripts/latlong.html epsilon = 0.5 / kms_per_radian # radians() Convert angles from degrees to radians db = DBSCAN(eps=epsilon, min_samples=15, algorithm='ball_tree', metric='haversine').fit(np.radians(coords)) cluster_labels = db.labels_ # get the number of clusters (ignore noisy samples which are given the label -1) num_clusters = len(set(cluster_labels) - set([-1])) print('Clustered ' + str(len(in_df)) + ' points to ' + str(num_clusters) + ' clusters') # turn the clusters in to a pandas series # clusters = pd.Series([coords[cluster_labels == n] for n in range(num_clusters)]) # print(clusters) kmeans = KMeans(n_clusters=1, n_init=1, max_iter=20, random_state=20) for n in range(num_clusters): # print('Cluster ', n, ' all samples:') one_cluster = coords[cluster_labels == n] # print(one_cluster[:1]) # clist = one_cluster.tolist() # print(clist[0]) kk = kmeans.fit(one_cluster) print(kk.cluster_centers_) def main(): path = './datas' filelist = os.listdir(path) for f in filelist: datafile = os.path.join(path, f) print(datafile) dbscan(datafile) if __name__ == '__main__': main()

最新推荐

recommend-type

rockyou.txt

rockyou
recommend-type

ASP+ACCESS网上人才信息管理系统(源代码+论文)【ASP】.zip

ASP+ACCESS网上人才信息管理系统(源代码+论文)【ASP】
recommend-type

河北金融学院经济大数据课设2024年 软科学校爬虫课设

河北金融学院经济大数据课设2024年 软科学校爬虫课设
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB结构体与对象编程:构建面向对象的应用程序,提升代码可维护性和可扩展性

![MATLAB结构体与对象编程:构建面向对象的应用程序,提升代码可维护性和可扩展性](https://picx.zhimg.com/80/v2-8132d9acfebe1c248865e24dc5445720_1440w.webp?source=1def8aca) # 1. MATLAB结构体基础** MATLAB结构体是一种数据结构,用于存储和组织相关数据。它由一系列域组成,每个域都有一个名称和一个值。结构体提供了对数据的灵活访问和管理,使其成为组织和处理复杂数据集的理想选择。 MATLAB中创建结构体非常简单,使用struct函数即可。例如: ```matlab myStruct
recommend-type

详细描述一下STM32F103C8T6怎么与DHT11连接

STM32F103C8T6可以通过单总线协议与DHT11连接。连接步骤如下: 1. 将DHT11的VCC引脚连接到STM32F103C8T6的5V电源引脚; 2. 将DHT11的GND引脚连接到STM32F103C8T6的GND引脚; 3. 将DHT11的DATA引脚连接到STM32F103C8T6的GPIO引脚,可以选择任一GPIO引脚,需要在程序中配置; 4. 在程序中初始化GPIO引脚,将其设为输出模式,并输出高电平,持续至少18ms,以激活DHT11; 5. 将GPIO引脚设为输入模式,等待DHT11响应,DHT11会先输出一个80us的低电平,然后输出一个80us的高电平,
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB结构体与数据库交互:无缝连接数据存储与处理,实现数据管理自动化

![MATLAB结构体与数据库交互:无缝连接数据存储与处理,实现数据管理自动化](https://ww2.mathworks.cn/products/database/_jcr_content/mainParsys/band_1749659463_copy/mainParsys/columns_copy/6d5289a2-72ce-42a8-a475-d130cbebee2e/image_copy_2009912310.adapt.full.medium.jpg/1709291769739.jpg) # 1. MATLAB结构体与数据库交互概述** MATLAB结构体与数据库交互是一种强大的