写一个ACGAN,生成192*108大小的图像
时间: 2024-12-12 10:25:06 浏览: 18
生成对抗网络(Generative Adversarial Networks, GANs)通常用于生成逼真的样本数据,比如图像、音频等。ACGAN(AdversarialConditionalGAN)则是GAN的一种变体,它引入了条件概率,在生成图像时可以指定特定的类别信息,例如在这里生成特定尺寸的图像。
以下是一个简化的ACGAN编写概述:
```python
import tensorflow as tf
from tensorflow.keras.layers import Input, Dense, Reshape, Flatten, Conv2D, Conv2DTranspose, LeakyReLU
# 假设输入噪声向量 z 和类别标签 c
z = Input(shape=(latent_dim,))
c = Input(shape=(num_classes,), dtype='int32')
# Generator (从噪声和类别生成图像)
def make_generator(latent_dim, num_classes):
x = Dense(4 * 4 * hidden_units, activation=LeakyReLU)(z)
x = Reshape((4, 4, hidden_units))(x)
# 将类别编码添加到特征图中
conditionally_concat = concatenate([Flatten()(c), x])
x = Dense(8 * 8 * hidden_units)(conditionally_concat)
x = Reshape((8, 8, hidden_units))(x)
x = Conv2DTranspose(filters=hidden_units, kernel_size=4, strides=2, padding='same')(x)
x = LeakyReLU(alpha=0.2)(x)
output = Conv2DTranspose(filters=num_channels, kernel_size=4, strides=2, padding='same', activation='tanh')(x)
return Model(inputs=[z, c], outputs=output)
# Discriminator (判断生成的图像是否真实)
def make_discriminator(num_channels):
input_img = Input(shape=(image_height, image_width, num_channels))
x = Conv2D(filters=hidden_units, kernel_size=4, strides=2, padding='same')(input_img)
x = LeakyReLU(alpha=0.2)(x)
x = Conv2D(filters=hidden_units * 2, kernel_size=4, strides=2, padding='same')(x)
x = BatchNormalization(momentum=0.8)(x)
x = LeakyReLU(alpha=0.2)(x)
x = Flatten()(x)
x = Dense(1, activation='sigmoid')(x)
return Model(inputs=input_img, outputs=x)
generator = make_generator(latent_dim, num_classes)
discriminator = make_discriminator(num_channels)
# 编译并训练GAN
gan_model = Sequential()
gan_model.add(generator)
gan_model.add(discriminator)
...
# 训练步骤包括生成器试图欺骗鉴别器,鉴别器则试图区分真实和假图片
gan_model.compile(loss=['binary_crossentropy'], optimizer=..., metrics=['accuracy'])
...
```
请注意,这只是一个基础框架,实际实现需要设置合适的超参数如`latent_dim`、`hidden_units`、`num_classes`、`image_height`、`image_width`、`num_channels`以及优化器和损失函数。训练GAN的过程通常比较复杂,并且可能涉及较多迭代和调试。
阅读全文