用Pycharm写一个深度残差网络的代码
时间: 2024-12-19 22:26:30 浏览: 10
Resnet_resnet残差网络_
5星 · 资源好评率100%
在PyCharm中编写深度残差网络(Residual Network, ResNet)的代码通常涉及使用深度学习框架,如TensorFlow或PyTorch。这里我将以PyTorch为例给出一个简单的ResNet模型结构的代码:
```python
import torch
import torch.nn as nn
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_channels, out_channels, stride=1):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels)
self.shortcut = nn.Sequential()
if stride != 1 or in_channels != out_channels:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(out_channels)
)
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out += self.shortcut(residual) # Residual connection
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes=1000):
super(ResNet, self).__init__()
self.in_channels = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self.make_layer(block, 64, layers[0])
self.layer2 = self.make_layer(block, 128, layers[1], stride=2)
self.layer3 = self.make_layer(block, 256, layers[2], stride=2)
self.layer4 = self.make_layer(block, 512, layers[3], stride=2)
self.avg_pool = nn.AvgPool2d(7)
self.fc = nn.Linear(512 * block.expansion, num_classes)
def make_layer(self, block, out_channels, blocks, stride=1):
layer = []
layer.append(block(self.in_channels, out_channels, stride))
self.in_channels = out_channels * block.expansion
for _ in range(1, blocks):
layer.append(block(out_channels, out_channels))
return nn.Sequential(*layer)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avg_pool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
# 使用示例
resnet18 = ResNet(BasicBlock, [2, 2, 2, 2]) # 创建一个ResNet18模型
input_image = torch.randn(1, 3, 224, 224) # 假设输入图片大小是224x224
output = resnet18(input_image)
```
阅读全文