transformer进化
时间: 2023-10-11 15:11:29 浏览: 124
残差卷积的注意力方面进化
Transformer 是一种基于自注意力机制的神经网络模型,广泛应用于自然语言处理任务中。它在机器翻译任务中取得了巨大的成功,被认为是一个重要的进展。Transformer 的设计思想是将输入序列和输出序列都视为由多个连续的向量组成,通过多层自注意力和前馈神经网络进行处理。
Transformer 的核心思想是自注意力机制,它通过计算序列中每个位置与其他位置的关联度来捕捉上下文信息。具体而言,自注意力机制会计算一个查询向量、一组键向量和一组值向量之间的注意力分数,并根据这些分数对值向量进行加权求和。这样,每个位置的输出都能够同时关注到序列中其他位置的信息。
Transformer 模型由编码器和解码器组成。编码器负责将输入序列编码为一个抽象表示,而解码器则将该表示解码为输出序列。它们都由多个相同的层组成,每个层包含一个自注意力子层和一个前馈神经网络子层。在训练过程中,Transformer 使用了残差连接和层归一化等技术来促进模型的训练和收敛。
随着时间的推移,Transformer 也经历了一些改进和扩展。其中最著名的是BERT(Bidirectional Encoder Representations from Transformers)模型,它引入了双向编码器来更好地利用上下文信息。此外,GPT(Generative Pre-trained Transformer)模型通过预训练和微调的方式,在生成式任务上取得了很好的效果。
阅读全文