yolov7ocr文字识别
时间: 2023-12-14 13:34:44 浏览: 139
很抱歉,目前并不存在YOLOv7这个版本,YOLO目前最新的版本是YOLOv5。不过,YOLOv5可以与OCR结合使用,实现文字识别的功能。以下是一个基于YOLOv5和OCR的文字识别的例子:
首先,需要安装YOLOv5和OCR的Python库。可以使用以下命令进行安装:
```shell
pip install yolov5 easyocr
```
然后,可以使用以下代码进行文字识别:
```python
import cv2
import easyocr
from matplotlib import pyplot as plt
from pathlib import Path
# 加载YOLOv5模型
model = cv2.dnn.readNet('yolov5s.torchscript.pt', 'yolov5s.yaml')
# 加载OCR模型
reader = easyocr.Reader(['ch_sim', 'en'])
# 加载图片
img_path = Path('example.jpg')
img = cv2.imread(str(img_path))
# 使用YOLOv5检测文本区域
blob = cv2.dnn.blobFromImage(img, size=(640, 640), swapRB=True)
model.setInput(blob)
outs = model.forward(['output'])
boxes = []
confidences = []
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.5 and class_id == 0:
box = detection[:4] * np.array([img.shape[1], img.shape[0], img.shape[1], img.shape[0]])
(centerX, centerY, width, height) = box.astype("int")
x = int(centerX - (width / 2))
y = int(centerY - (height / 2))
boxes.append([x, y, int(width), int(height)])
confidences.append(float(confidence))
# 对文本区域进行OCR识别
results = reader.recognize(img, boxes)
# 显示结果
for (bbox, text, prob) in results:
(tl, tr, br, bl) = bbox
tl = (int(tl[0]), int(tl[1]))
tr = (int(tr[0]), int(tr[1]))
br = (int(br[0]), int(br[1]))
bl = (int(bl[0]), int(bl[1]))
cv2.rectangle(img, tl, br, (0, 255, 0), 2)
cv2.putText(img, text, (tl[0], tl[1] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 2)
plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
plt.show()
```
这段代码会加载YOLOv5模型和OCR模型,然后使用YOLOv5检测文本区域,最后对文本区域进行OCR识别,并在图片上显示识别结果。
阅读全文