igh sdo 配置
时间: 2023-11-05 22:03:14 浏览: 141
IGH是控制工业机器人系统的一种协议,它定义了机器人与控制器之间的通信规则和数据格式。SDO是一个字节顺序的TCP/IP协议,用于在网络上传输数据。IGH SDO配置是指在工业机器人系统中配置IGH协议和SDO协议的过程。
IGH SDO配置的目的是确保机器人能够正确地与控制器进行通信,并实现控制和监控功能。配置过程一般包括以下几个步骤:
1. 确定机器人和控制器的网络连接方式:可以通过有线或无线网络连接机器人和控制器。需要确保网络连接稳定并能够满足数据传输的要求。
2. 配置机器人和控制器的网络参数:包括IP地址、子网掩码、网关等。需要确保机器人和控制器在同一个局域网中,并且能够互相通信。
3. 配置IGH协议和SDO协议的参数:包括通信速率、数据格式、错误处理等。需要根据具体的机器人和控制器型号,按照它们的规格手册进行配置。
4. 进行测试和调试:配置完成后,需要进行测试和调试,确保机器人和控制器能够正常通信,并能够实现控制和监控功能。
IGH SDO配置工作的完成需要具备一定的网络和通信知识,同时需要对机器人的控制系统有一定的了解。配置过程中需要仔细阅读机器人和控制器的规格手册,并按照要求进行操作。
IGH SDO配置的正确与否直接影响到工业机器人系统的稳定性和性能。因此,在配置过程中需要认真对待,确保配置的准确性和可靠性。当出现问题时,需要及时排查和解决,以保证系统的正常运行。
相关问题
igh ethercat汇川示例
以下是一个基于EtherCAT总线的汇川伺服驱动器的示例程序:
```c++
#include <iostream>
#include <cstdint>
#include <cstring>
#include <unistd.h>
#include "ethercat.h"
#define EC_TIMEOUTMON 500
using namespace std;
int main(int argc, char **argv) {
ec_master_t *master = ecrt_request_master(0);
ec_master_state_t master_state;
ec_master_state_t expected_state = {
.al_states = EC_AL_STATES_OP,
.link_up = true,
.masters_responding = 1
};
int ret = ecrt_master_open(master, 0);
if (ret < 0) {
cerr << "Failed to open EtherCAT master: " << ecrt_strerror(-ret) << endl;
return 1;
}
ret = ecrt_master_get_state(master, &master_state);
if (ret < 0) {
cerr << "Failed to get EtherCAT master state: " << ecrt_strerror(-ret) << endl;
ecrt_master_close(master);
return 1;
}
if (memcmp(&master_state, &expected_state, sizeof(ec_master_state_t)) != 0) {
cerr << "EtherCAT master is not in the expected state" << endl;
ecrt_master_close(master);
return 1;
}
ec_slave_config_t *sc_motor = ecrt_master_slave_config(master, 0, 0x0001, 0x0000, EC_MAX_PORTS);
if (!sc_motor) {
cerr << "Failed to get slave configuration for motor" << endl;
ecrt_master_close(master);
return 1;
}
ret = ecrt_slave_config_dc(sc_motor, 0x0300, 1000000, 440000, 0, 0);
if (ret < 0) {
cerr << "Failed to configure DC for motor: " << ecrt_strerror(-ret) << endl;
ecrt_master_close(master);
return 1;
}
ec_domain_t *domain = ecrt_master_create_domain(master);
if (!domain) {
cerr << "Failed to create EtherCAT domain" << endl;
ecrt_master_close(master);
return 1;
}
if (ecrt_domain_reg_pdo_entry(domain, 0, 0, EC_REG_VENDOR_ID, EC_REG_VENDOR_ID_SIZE, EC_REG_VENDOR_ID_OFFSET, EC_REG_VENDOR_ID_SUBINDEX, EC_REG_VENDOR_ID_TYPE) < 0) {
cerr << "Failed to register PDO entry for vendor ID" << endl;
ecrt_master_close(master);
return 1;
}
if (ecrt_domain_reg_pdo_entry(domain, 0, 0, EC_REG_PRODUCT_CODE, EC_REG_PRODUCT_CODE_SIZE, EC_REG_PRODUCT_CODE_OFFSET, EC_REG_PRODUCT_CODE_SUBINDEX, EC_REG_PRODUCT_CODE_TYPE) < 0) {
cerr << "Failed to register PDO entry for product code" << endl;
ecrt_master_close(master);
return 1;
}
if (ecrt_domain_reg_pdo_entry(domain, 0, 0, EC_REG_CONTROL_WORD, EC_REG_CONTROL_WORD_SIZE, EC_REG_CONTROL_WORD_OFFSET, EC_REG_CONTROL_WORD_SUBINDEX, EC_REG_CONTROL_WORD_TYPE) < 0) {
cerr << "Failed to register PDO entry for control word" << endl;
ecrt_master_close(master);
return 1;
}
if (ecrt_domain_reg_pdo_entry(domain, 0, 0, EC_REG_STATUS_WORD, EC_REG_STATUS_WORD_SIZE, EC_REG_STATUS_WORD_OFFSET, EC_REG_STATUS_WORD_SUBINDEX, EC_REG_STATUS_WORD_TYPE) < 0) {
cerr << "Failed to register PDO entry for status word" << endl;
ecrt_master_close(master);
return 1;
}
ec_pdo_entry_reg_t pdo_entries[] = {
{
.alias = 0,
.position = 0,
.vendor_id = EC_REG_VENDOR_ID,
.product_code = EC_REG_PRODUCT_CODE,
.index = EC_REG_CONTROL_WORD_INDEX,
.subindex = EC_REG_CONTROL_WORD_SUBINDEX,
.bit_position = 0,
.bit_length = 16,
.name = "control_word",
.data_type = EC_REG_CONTROL_WORD_TYPE,
.access_type = EC_ACCESS_TYPE_RW
},
{
.alias = 0,
.position = 0,
.vendor_id = EC_REG_VENDOR_ID,
.product_code = EC_REG_PRODUCT_CODE,
.index = EC_REG_STATUS_WORD_INDEX,
.subindex = EC_REG_STATUS_WORD_SUBINDEX,
.bit_position = 0,
.bit_length = 16,
.name = "status_word",
.data_type = EC_REG_STATUS_WORD_TYPE,
.access_type = EC_ACCESS_TYPE_RO
}
};
if (ecrt_slave_config_pdo(sc_motor, EC_PDO_CONFIG_DEFAULT, pdo_entries, array_size(pdo_entries)) < 0) {
cerr << "Failed to configure PDOs for motor" << endl;
ecrt_master_close(master);
return 1;
}
if (ecrt_domain_reg_callback(domain, &ecrt_domain_cb_stats, NULL) < 0) {
cerr << "Failed to register domain callback" << endl;
ecrt_master_close(master);
return 1;
}
if (ecrt_master_activate(master) < 0) {
cerr << "Failed to activate EtherCAT master" << endl;
ecrt_master_close(master);
return 1;
}
ec_pdo_entry_info_t pdo_info;
if (ecrt_slave_config_pdos(sc_motor, EC_SDO_CONFIG_PERSIST, EC_TIMEOUTMON, &pdo_info) < 0) {
cerr << "Failed to configure PDO mapping for motor" << endl;
ecrt_master_close(master);
return 1;
}
ecrt_domain_state_t domain_state;
ecrt_master_receive(master);
ecrt_domain_process(domain);
ecrt_domain_state(domain, &domain_state);
if (domain_state.working_counter == 0) {
cerr << "Motor is not responding" << endl;
ecrt_master_close(master);
return 1;
}
uint16_t control_word = 0x0006;
uint16_t status_word = 0x0000;
if (ecrt_domain_queue(domain, &control_word, EC_REG_CONTROL_WORD_OFFSET, sizeof(control_word), EC_REG_CONTROL_WORD_TYPE, EC_WRITE_ACCESS) < 0) {
cerr << "Failed to queue write access to control word" << endl;
ecrt_master_close(master);
return 1;
}
while (true) {
ecrt_master_receive(master);
ecrt_domain_process(domain);
memcpy(&status_word, domain->data + EC_REG_STATUS_WORD_OFFSET, sizeof(status_word));
if (status_word & 0x0004) {
cout << "Motor is in fault state" << endl;
break;
}
if (status_word & 0x0028) {
cout << "Motor is in operation enabled state" << endl;
break;
}
usleep(1000);
}
ecrt_master_close(master);
return 0;
}
```
这个示例程序假设你已经熟悉EtherCAT总线的基本概念,并且你已经熟悉如何配置汇川伺服驱动器的PDO映射和监控状态字。如果你还没有这些知识,请先阅读相关文档和教程。
igh ethercat雷赛步进例程
以下是使用EtherCAT总线控制雷赛步进电机的简单示例代码:
```
#include <ethercat.h>
#include <stdio.h>
#define NUM_OF_SLAVES 1
#define POS_MODE 0x08 // Set to position mode
#define MAX_POS 200000 // Maximum position
uint8_t inbuf[32*NUM_OF_SLAVES];
uint8_t outbuf[32*NUM_OF_SLAVES];
int main(int argc, char **argv) {
int expected_wkc;
int slave;
uint16_t status;
uint32_t position;
int32_t target_pos;
// Initialize EtherCAT master
if (ec_init("enp0s31f6") > 0) {
printf("ec_init on enp0s31f6 succeeded.\n");
} else {
printf("ec_init on enp0s31f6 failed.\n");
return -1;
}
// Set number of slaves
if (ec_config_init(FALSE) > 0) {
printf("%d slaves found and configured.\n", ec_slavecount);
} else {
printf("No slaves found.\n");
ec_close();
return -1;
}
// Check if there is only one slave
if (ec_slavecount != NUM_OF_SLAVES) {
printf("Error: Expected %d slaves but found %d.\n", NUM_OF_SLAVES, ec_slavecount);
ec_close();
return -1;
}
// Configure slave
for (slave = 1; slave <= ec_slavecount; slave++) {
// Set slave to operational state
ec_slave[slave].state = EC_STATE_OPERATIONAL;
ec_slave[slave].ALstatuscode = 0;
// Request state transition
ec_slave[slave].state_request = EC_STATE_OPERATIONAL;
ec_writestate(slave);
// Wait for state transition
ec_statecheck(slave, EC_STATE_OPERATIONAL, EC_TIMEOUTSTATE);
if (ec_slave[slave].state != EC_STATE_OPERATIONAL) {
printf("Slave %d did not reach operational state.\n", slave);
ec_close();
return -1;
}
// Read slave status
ec_readstate();
status = ec_slave[slave].state;
printf("Slave %d status: %d\n", slave, status);
// Set slave to position mode
outbuf[0] = POS_MODE;
expected_wkc = ec_SDOwrite(slave, 0x6060, 0x00, FALSE, 1, outbuf, EC_TIMEOUTRXM);
// Set maximum position
position = MAX_POS;
outbuf[0] = (uint8_t)(position & 0x000000FF);
outbuf[1] = (uint8_t)((position >> 8) & 0x000000FF);
outbuf[2] = (uint8_t)((position >> 16) & 0x000000FF);
outbuf[3] = (uint8_t)((position >> 24) & 0x000000FF);
expected_wkc += ec_SDOwrite(slave, 0x607A, 0x00, FALSE, 4, outbuf, EC_TIMEOUTRXM);
// Enable slave
outbuf[0] = 0x0F;
expected_wkc += ec_SDOwrite(slave, 0x6040, 0x00, FALSE, 1, outbuf, EC_TIMEOUTRXM);
if (expected_wkc != (3 * NUM_OF_SLAVES)) {
printf("Error: Expected %d write operations but %d were executed.\n", (3 * NUM_OF_SLAVES), expected_wkc);
ec_close();
return -1;
}
}
// Set target position to 0
target_pos = 0;
// Loop until target position is reached
while (1) {
// Read current position
ec_readstate();
position = (ec_slave[1].inputs[0]) | (ec_slave[1].inputs[1] << 8) | (ec_slave[1].inputs[2] << 16) | (ec_slave[1].inputs[3] << 24);
// Print current position
printf("Current position: %d\n", position);
// Check if target position is reached
if (position == target_pos) {
printf("Target position reached.\n");
break;
}
// Set target position
outbuf[0] = (uint8_t)(target_pos & 0x000000FF);
outbuf[1] = (uint8_t)((target_pos >> 8) & 0x000000FF);
outbuf[2] = (uint8_t)((target_pos >> 16) & 0x000000FF);
outbuf[3] = (uint8_t)((target_pos >> 24) & 0x000000FF);
expected_wkc = ec_SDOwrite(slave, 0x607A, 0x00, FALSE, 4, outbuf, EC_TIMEOUTRXM);
// Wait for position update
ec_send_processdata();
ec_receive_processdata(EC_TIMEOUTRET);
// Increment target position
target_pos += 1000;
if (target_pos > MAX_POS) {
target_pos = 0;
}
}
// Set slave to pre-operational state
for (slave = 1; slave <= ec_slavecount; slave++) {
ec_slave[slave].state_request = EC_STATE_PRE_OPERATIONAL;
ec_writestate(slave);
}
// Close EtherCAT master
ec_close();
return 0;
}
```
这个代码示例假定只有一个从站连接到EtherCAT总线上,并且该从站是雷赛步进电机。在代码中,我们使用了EtherCAT库中的函数来初始化EtherCAT主站、配置从站和读写从站的寄存器。我们还使用了从站状态机来将从站设置为操作状态,并使用SDO(服务数据对象)来设置从站的工作模式和最大位置。我们还使用了一个循环来将电机移动到不同的位置,并在移动过程中打印当前位置。
请注意,这只是一个简单的示例代码,实际的应用程序可能需要更多的功能和错误处理。
阅读全文