neighborhood attention代码实现
时间: 2023-12-02 15:02:02 浏览: 146
邻域注意力(Neighborhood Attention)是一种用于图像分割的注意力机制,可以在局部区域内聚焦于感兴趣的特征。其代码实现如下:
```python
import torch
import torch.nn as nn
class NeighborhoodAttention(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1):
super(NeighborhoodAttention, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding)
self.conv2 = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding)
self.conv3 = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
x1 = self.conv1(x)
x2 = self.conv2(x)
x3 = self.conv3(x)
x4 = torch.cat([x1, x2, x3], dim=1)
x5 = torch.mean(x4, dim=1, keepdim=True)
x6 = self.sigmoid(x5)
x7 = x * x6
return x7
```
在这个实现中,我们使用了三个卷积层来提取特征,然后将它们拼接在一起。接着,我们对拼接后的特征进行平均池化,并使用 Sigmoid 函数将其映射到 [0, 1] 的范围内。最后,我们将输入特征和注意力特征相乘,得到最终的输出特征。
阅读全文