MATLAB sort函数在生物信息学中的应用:序列排序与基因组分析

发布时间: 2024-06-11 03:54:09 阅读量: 78 订阅数: 35
M

matlab 使用 sort 函数来对数组进行排序 代码

star5星 · 资源好评率100%
![sort函数matlab](https://img-blog.csdnimg.cn/20210411234856807.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80Mzc0MzcxMQ==,size_16,color_FFFFFF,t_70) # 1. MATLAB sort函数简介** MATLAB 中的 `sort` 函数用于对数组或矩阵中的元素进行排序。它是一个内置函数,具有以下语法: ``` [sortedArray, sortedIndices] = sort(array, dimension, direction) ``` 其中: * `array`:要排序的数组或矩阵。 * `dimension`(可选):指定沿哪个维度进行排序。默认为 1(按行)。 * `direction`(可选):指定排序方向。默认为 'ascend'(升序)。 # 2. 序列排序应用 序列排序是生物信息学中的一项基本技术,用于确定DNA或RNA分子的碱基序列。MATLAB提供了各种函数和工具箱,用于序列排序和分析。本章将介绍序列排序在DNA和RNA序列中的应用。 ### 2.1 DNA序列排序 **2.1.1 序列读取和预处理** DNA序列排序的第一步是读取原始序列数据。MATLAB可以使用`fastaread`函数从FASTA文件中读取序列。读取的序列可能包含错误和杂质,因此需要进行预处理以提高排序精度。预处理步骤包括: ```matlab % 读取FASTA文件 sequence = fastaread('sequence.fasta'); % 转换序列为字符数组 sequence = char(sequence.Sequence); % 修剪末端空白字符 sequence = strtrim(sequence); % 移除非碱基字符 sequence = regexprep(sequence, '[^ACGT]', ''); ``` **2.1.2 序列比对和排序** 序列预处理后,可以进行序列比对和排序。MATLAB提供了`bioinfo`工具箱,其中包含用于序列比对和排序的函数。序列比对可以识别序列之间的相似性和差异性,而排序可以将序列按相似性或其他标准排列。 ```matlab % 序列比对 alignment = nwalign(sequence1, sequence2); % 序列排序 [sortedSequences, order] = sort(sequences); ``` ### 2.2 RNA序列排序 **2.2.1 序列拼接和注释** RNA序列排序涉及将来自不同片段的RNA序列拼接成一个连续序列。MATLAB可以使用`bioinfo`工具箱中的`assemble`函数进行序列拼接。拼接后的序列需要进行注释,以识别基因、外显子和内含子等特征。 ```matlab % 序列拼接 assembledSequence = assemble(sequences); % 序列注释 annotation = annotate(assembledSequence, 'gene', 'exon', 'intron'); ``` **2.2.2 序列比对和表达分析** 注释后的RNA序列可以进行比对和表达分析。比对可以识别不同样本或条件下的RNA序列差异。表达分析可以量化不同基因或转录本的表达水平。 ```matlab % 序列比对 alignment = nwalign(sequence1, sequence2); % 表达分析 expressionLevels = rnaseq(sequences, 'gene', 'counts'); ```
corwn 最低0.47元/天 解锁专栏
买1年送3月
点击查看下一篇
profit 百万级 高质量VIP文章无限畅学
profit 千万级 优质资源任意下载
profit C知道 免费提问 ( 生成式Al产品 )

相关推荐

doc
遗传算法matlab程序(2009-04-14 18:25:19)转载标签: 遗传算法二进制编码if杂谈 遗传算法程序: 说明: fga.m 为遗传算法的主程序; 采用二进制Gray编码,采用基于轮盘赌法的非线性排名选择, 均匀交叉,变异操作,而且还引入了倒位操作! function [BestPop,Trace]=fga(FUN,LB,UB,eranum,popsize,pCross,pMutation,pInversion,options) % [BestPop,Trace]=fmaxga(FUN,LB,UB,eranum,popsize,pcross,pmutation) % Finds a maximum of a function of several variables. % fmaxga solves problems of the form: % max F(X) subject to: LB <= X <= UB % BestPop - 最优的群体即为最优的染色体群 % Trace - 最佳染色体所对应的目标函数值 % FUN - 目标函数 % LB - 自变量下限 % UB - 自变量上限 % eranum - 种群的代数,取100--1000(默认200) % popsize - 每一代种群的规模;此可取50--200(默认100) % pcross - 交叉概率,一般取0.5--0.85之间较好(默认0.8) % pmutation - 初始变异概率,一般取0.05-0.2之间较好(默认0.1) % pInversion - 倒位概率,一般取0.05-0.3之间较好(默认0.2) % options - 1*2矩阵,options(1)=0二进制编码(默认0),option(1)~=0十进制编 %码,option(2)设定求解精度(默认1e-4) % % ------------------------------------------------------------------------ T1=clock; if nargin<3, error('FMAXGA requires at least three input arguments'); end if nargin==3, eranum=200;popsize=100;pCross=0.8;pMutation=0.1;pInversion=0.15;options=[0 1e-4];end if nargin==4, popsize=100;pCross=0.8;pMutation=0.1;pInversion=0.15;options=[0 1e-4];end if nargin==5, pCross=0.8;pMutation=0.1;pInversion=0.15;options=[0 1e-4];end if nargin==6, pMutation=0.1;pInversion=0.15;options=[0 1e-4];end if nargin==7, pInversion=0.15;options=[0 1e-4];end if find((LB-UB)>0) error('数据输入错误,请重新输入(LB<UB):'); end s=sprintf('程序运行需要约%.4f 秒钟时间,请稍等......',(eranum*popsize/1000)); disp(s); global m n NewPop children1 children2 VarNum bounds=[LB;UB]';bits=[];VarNum=size(bounds,1); precision=options(2);%由求解精度确定二进制编码长度 bits=ceil(log2((bounds(:,2)-bounds(:,1))' ./ precision));%由设定精度划分区间 [Pop]=InitPopGray(popsize,bits);%初始化种群 [m,n]=size(Pop); NewPop=zeros(m,n); children1=zeros(1,n); children2=zeros(1,n); pm0=pMutation; BestPop=zeros(eranum,n);%分配初始解空间BestPop,Trace Trace=zeros(eranum,length(bits)+1); i=1; while i<=eranum for j=1:m value(j)=feval_r(FUN(1,:),(b2f(Pop(j,:),bounds,bits)));%计算适应度 end [MaxValue,Index]=max(value); BestPop(i,:)=Pop(Index,:); Trace(i,1)=MaxValue; Trace(i,(2:length(bits)+1))=b2f(BestPop(i,:),bounds,bits); [selectpop]=NonlinearRankSelect(FUN,Pop,bounds,bits);%非线性排名选择 [CrossOverPop]=CrossOver(selectpop,pCross,round(unidrnd(eranum-i)/eranum)); %采用多点交叉和均匀交叉,且逐步增大均匀交叉的概率 %round(unidrnd(eranum-i)/eranum) [MutationPop]=Mutation(CrossOverPop,pMutation,VarNum);%变异 [InversionPop]=Inversion(MutationPop,pInversion);%倒位 Pop=InversionPop;%更新 pMutation=pm0+(i^4)*(pCross/3-pm0)/(eranum^4); %随着种群向前进化,逐步增大变异率至1/2交叉率 p(i)=pMutation; i=i+1; end t=1:eranum; plot(t,Trace(:,1)'); title('函数优化的遗传算法');xlabel('进化世代数(eranum)');ylabel('每一代最优适应度(maxfitness)'); [MaxFval,I]=max(Trace(:,1)); X=Trace(I,(2:length(bits)+1)); hold on; plot(I,MaxFval,'*'); text(I+5,MaxFval,['FMAX=' num2str(MaxFval)]); str1=sprintf('进化到 %d 代 ,自变量为 %s 时,得本次求解的最优值 %f\n对应染色体是:%s',I,num2str(X),MaxFval,num2str(BestPop(I,:))); disp(str1); %figure(2);plot(t,p);%绘制变异值增大过程 T2=clock; elapsed_time=T2-T1; if elapsed_time(6)<0 elapsed_time(6)=elapsed_time(6)+60; elapsed_time(5)=elapsed_time(5)-1; end if elapsed_time(5)<0 elapsed_time(5)=elapsed_time(5)+60;elapsed_time(4)=elapsed_time(4)-1; end %像这种程序当然不考虑运行上小时啦 str2=sprintf('程序运行耗时 %d 小时 %d 分钟 %.4f 秒',elapsed_time(4),elapsed_time(5),elapsed_time(6)); disp(str2); %初始化种群 %采用二进制Gray编码,其目的是为了克服二进制编码的Hamming悬崖缺点 function [initpop]=InitPopGray(popsize,bits) len=sum(bits); initpop=zeros(popsize,len);%The whole zero encoding individual for i=2:popsize-1 pop=round(rand(1,len)); pop=mod(([0 pop]+[pop 0]),2); %i=1时,b(1)=a(1);i>1时,b(i)=mod(a(i-1)+a(i),2) %其中原二进制串:a(1)a(2)...a(n),Gray串:b(1)b(2)...b(n) initpop(i,:)=pop(1:end-1); end initpop(popsize,:)=ones(1,len);%The whole one encoding individual %解码 function [fval] = b2f(bval,bounds,bits) % fval - 表征各变量的十进制数 % bval - 表征各变量的二进制编码串 % bounds - 各变量的取值范围 % bits - 各变量的二进制编码长度 scale=(bounds(:,2)-bounds(:,1))'./(2.^bits-1); %The range of the variables numV=size(bounds,1); cs=[0 cumsum(bits)]; for i=1:numV a=bval((cs(i)+1):cs(i+1)); fval(i)=sum(2.^(size(a,2)-1:-1:0).*a)*scale(i)+bounds(i,1); end %选择操作 %采用基于轮盘赌法的非线性排名选择 %各个体成员按适应值从大到小分配选择概率: %P(i)=(q/1-(1-q)^n)*(1-q)^i, 其中 P(0)>P(1)>...>P(n), sum(P(i))=1 function [selectpop]=NonlinearRankSelect(FUN,pop,bounds,bits) global m n selectpop=zeros(m,n); fit=zeros(m,1); for i=1:m fit(i)=feval_r(FUN(1,:),(b2f(pop(i,:),bounds,bits)));%以函数值为适应值做排名依据 end selectprob=fit/sum(fit);%计算各个体相对适应度(0,1) q=max(selectprob);%选择最优的概率 x=zeros(m,2); x(:,1)=[m:-1:1]'; [y x(:,2)]=sort(selectprob); r=q/(1-(1-q)^m);%标准分布基值 newfit(x(:,2))=r*(1-q).^(x(:,1)-1);%生成选择概率 newfit=cumsum(newfit);%计算各选择概率之和 rNums=sort(rand(m,1)); fitIn=1;newIn=1; while newIn<=m if rNums(newIn)<newfit(fitIn) selectpop(newIn,:)=pop(fitIn,:); newIn=newIn+1; else fitIn=fitIn+1; end end %交叉操作 function [NewPop]=CrossOver(OldPop,pCross,opts) %OldPop为父代种群,pcross为交叉概率 global m n NewPop r=rand(1,m); y1=find(r=pCross); len=length(y1); if len>2&mod(len,2)==1%如果用来进行交叉的染色体的条数为奇数,将其调整为偶数 y2(length(y2)+1)=y1(len); y1(len)=[]; end if length(y1)>=2 for i=0:2:length(y1)-2 if opts==0 [NewPop(y1(i+1),:),NewPop(y1(i+2),:)]=EqualCrossOver(OldPop(y1(i+1),:),OldPop(y1(i+2),:)); else [NewPop(y1(i+1),:),NewPop(y1(i+2),:)]=MultiPointCross(OldPop(y1(i+1),:),OldPop(y1(i+2),:)); end end end NewPop(y2,:)=OldPop(y2,:); %采用均匀交叉 function [children1,children2]=EqualCrossOver(parent1,parent2) global n children1 children2 hidecode=round(rand(1,n));%随机生成掩码 crossposition=find(hidecode==1); holdposition=find(hidecode==0); children1(crossposition)=parent1(crossposition);%掩码为1,父1为子1提供基因 children1(holdposition)=parent2(holdposition);%掩码为0,父2为子1提供基因 children2(crossposition)=parent2(crossposition);%掩码为1,父2为子2提供基因 children2(holdposition)=parent1(holdposition);%掩码为0,父1为子2提供基因 %采用多点交叉,交叉点数由变量数决定 function [Children1,Children2]=MultiPointCross(Parent1,Parent2) global n Children1 Children2 VarNum Children1=Parent1; Children2=Parent2; Points=sort(unidrnd(n,1,2*VarNum)); for i=1:VarNum Children1(Points(2*i-1):Points(2*i))=Parent2(Points(2*i-1):Points(2*i)); Children2(Points(2*i-1):Points(2*i))=Parent1(Points(2*i-1):Points(2*i)); end %变异操作 function [NewPop]=Mutation(OldPop,pMutation,VarNum) global m n NewPop r=rand(1,m); position=find(r<=pMutation); len=length(position); if len>=1 for i=1:len k=unidrnd(n,1,VarNum); %设置变异点数,一般设置1点 for j=1:length(k) if OldPop(position(i),k(j))==1 OldPop(position(i),k(j))=0; else OldPop(position(i),k(j))=1; end end end end NewPop=OldPop; %倒位操作 function [NewPop]=Inversion(OldPop,pInversion) global m n NewPop NewPop=OldPop; r=rand(1,m); PopIn=find(r<=pInversion); len=length(PopIn); if len>=1 for i=1:len d=sort(unidrnd(n,1,2)); if d(1)~=1&d(2)~=n NewPop(PopIn(i),1:d(1)-1)=OldPop(PopIn(i),1:d(1)-1); NewPop(PopIn(i),d(1):d(2))=OldPop(PopIn(i),d(2):-1:d(1)); NewPop(PopIn(i),d(2)+1:n)=OldPop(PopIn(i),d(2)+1:n); end end end

SW_孙维

开发技术专家
知名科技公司工程师,开发技术领域拥有丰富的工作经验和专业知识。曾负责设计和开发多个复杂的软件系统,涉及到大规模数据处理、分布式系统和高性能计算等方面。
专栏简介
MATLAB sort函数是一个强大的工具,用于对数据进行排序,是数据分析、机器学习、图像处理和信号处理等领域的必备工具。本专栏深入探讨了sort函数的各个方面,从基本用法到高级技巧,再到性能优化和与其他排序算法的比较。它涵盖了广泛的应用,包括矩阵操作、数据分析、机器学习、图像处理、信号处理、文本处理、金融建模、生物信息学、优化算法、并行计算、云计算、移动计算、物联网和人工智能。通过揭示sort函数的秘密武器,本专栏将帮助读者掌握数据排序的艺术,并将其应用于各种领域。
最低0.47元/天 解锁专栏
买1年送3月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )

最新推荐

高级ROS集成指南:ORB-SLAM3稠密映射详解与优化

![高级ROS集成指南:ORB-SLAM3稠密映射详解与优化](https://ai2-s2-public.s3.amazonaws.com/figures/2017-08-08/637cb4b130f239943ad4326bff9455ee4ad199b6/10-Figure7-1.png) # 摘要 ORB-SLAM3稠密映射是三维重建和机器人定位与地图构建领域的一项突破性技术。本文从理论基础、系统架构、实践应用以及高级应用与优化等多方面对ORB-SLAM3稠密映射进行了全面探讨。通过分析其算法框架和关键技术,探讨了概率论和优化算法在稠密映射中的基础作用。进一步,本文详细介绍了ORB-

华硕笔记本维修全攻略:硬件故障诊断与解决方案(一步到位)

![华硕笔记本维修全攻略:硬件故障诊断与解决方案(一步到位)](https://i0.hdslb.com/bfs/archive/dda7416460713ff3981175d7649b2dfbca263227.jpg@960w_540h_1c.webp) # 摘要 本文全面概述了华硕笔记本硬件故障的类型、诊断、维修和预防策略。首先介绍了硬件故障的概念和基本诊断流程,然后详细分析了电源、内存、硬盘和显示系统等常见硬件问题,并阐述了故障诊断工具和方法的使用。接着,文章深入探讨了硬件维修和更换的技巧,包括工具准备、部件拆卸安装以及维修中的注意事项。通过华硕笔记本的维修案例分析,本文提供了故障排除

【HSPICE信号完整性分析】:确保电路设计性能的6个实用策略

![【HSPICE信号完整性分析】:确保电路设计性能的6个实用策略](https://media.cheggcdn.com/media/115/11577122-4a97-4c07-943b-f65c83a6f894/phpaA8k3A) # 摘要 随着集成电路性能的不断提升,信号完整性问题已成为电路设计中不可或缺的关注点。本文首先概述了HSPICE在信号完整性分析中的重要性,随后详细介绍了信号完整性理论基础,包括信号完整性的关键问题、电磁理论基础以及传输线理论。接着,本文详细阐述了进行HSPICE信号完整性分析前的准备工作,包括模型建立、材料属性选择及仿真环境配置。在仿真与分析技巧章节,时

【3D模型处理优化艺术】:使用AssimpCy,Python中高效处理的秘诀

![【3D模型处理优化艺术】:使用AssimpCy,Python中高效处理的秘诀](https://www.i2tutorials.com/wp-content/media/2020/08/Top-Image-Processing-Libraries-in-Python-1-1024x576.jpg) # 摘要 本文探讨了3D模型处理优化的基本概念和应用实践,重点介绍了AssimpCy库的安装、配置以及高级使用技巧,包括模型的导入导出、动画和材质处理等。文章进一步阐述了Python在3D模型简化、细节层次控制以及优化实践中的应用,并提供了实用的Python库和工具案例分析。深入探讨了高级3D

【Nextcloud案例研究】:从Windows服务器迁移至Nextcloud的最佳实践

![nextcloud 安装教程 windows 服务器中nextcloud 安装图解](https://www.addictivetips.com/app/uploads/2023/01/adt-hero-nc-win-1024x576-1.jpg) # 摘要 本文旨在探讨Nextcloud作为自托管云平台的综合应用,涵盖了从概述、安装配置、数据迁移、高级应用定制化到案例分析的全过程。首先,本文介绍了Nextcloud的基本概念及其在组织迁移中的背景。接着,详细阐述了Nextcloud的安装流程、基本配置以及安全设置和备份策略。第三章重点讨论了从Windows服务器到Nextcloud的数

【性能提升秘籍】:在Cache数据库中实现查询效率飞跃的关键策略

![【性能提升秘籍】:在Cache数据库中实现查询效率飞跃的关键策略](https://img-blog.csdnimg.cn/20200508115639240.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L1lZUV9RWVk=,size_16,color_FFFFFF,t_70) # 摘要 本文探讨了Cache数据库在查询效率方面的挑战与机遇,深入理解其基本原理和性能关键指标。重点研究了如何通过索引优化技术、查询计划分析与数据库

全差分放大器频率响应优化:8个理论技巧与实践案例

![全差分运算放大器设计](https://media.cheggcdn.com/media/9ec/9ec0872d-cb2f-42cb-8ba0-b0bfb2906915/php2Xb6YK) # 摘要 全差分放大器的频率响应是模拟电路设计中的关键指标,直接影响着电路的性能。本文首先介绍了全差分放大器频率响应的基础理论,随后提出通过设计参数优化、晶体管级与反馈网络设计等策略来提升频率响应。通过模拟电路仿真工具的应用,我们深入探讨了频率响应的仿真分析,并对仿真结果进行了详细的解读与优化。文中还结合低噪声放大器、高速数据采集系统和射频应用的实践案例,详细说明了频率响应优化的具体步骤和成效。最

【ILWIS3.8投影变换解决方案】:快速解决空间数据坐标系统不一致问题

![【ILWIS3.8投影变换解决方案】:快速解决空间数据坐标系统不一致问题](https://static.wixstatic.com/media/57773c_0392eaad061d432d8ed8aea6c453cb07~mv2.png/v1/fit/w_2500,h_1330,al_c/57773c_0392eaad061d432d8ed8aea6c453cb07~mv2.png) # 摘要 ILWIS3.8作为一个功能强大的地理信息系统软件,提供了详细的空间数据坐标系统管理和投影变换功能。本文首先介绍了ILWIS3.8的基本功能和界面,随后深入探讨了坐标系统的基础理论、类型以及其

【C#性能优化】:处理DXF文件的高效策略

![DXF文件](https://www.javelin-tech.com/blog/wp-content/uploads/2019/02/Export-DXF-1.jpg) # 摘要 本文全面探讨了C#与DXF文件处理的性能优化原理及实践应用。第一章介绍了C#与DXF文件处理的基础知识,第二章深入分析了DXF文件的结构,并讨论了如何使用纯C#技术高效解析DXF文件。第三章阐述了C#程序性能优化的基本原则,包括内存管理和并行/异步编程的高效应用。第四章聚焦于DXF文件处理中的性能优化技术,详细介绍了缓存机制、算法优化和代码优化技巧。最后一章展示了综合应用与案例研究,探讨了实际项目中处理DXF
最低0.47元/天 解锁专栏
买1年送3月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )