磁盘和分区管理:fdisk、df、du、mount等

发布时间: 2024-04-30 18:12:03 阅读量: 72 订阅数: 39
![磁盘和分区管理:fdisk、df、du、mount等](https://img-blog.csdnimg.cn/6524676e70a5447396ff27913477c4d6.png) # 1.1 磁盘和分区管理概述 磁盘和分区管理是系统管理员的关键任务,涉及到存储设备的配置、管理和维护。磁盘是计算机中用于存储数据的物理设备,而分区是磁盘上逻辑上划分出的存储区域。分区管理包括创建、删除、调整大小和格式化分区,以优化存储空间的使用和数据组织。 # 2. 磁盘和分区管理工具fdisk ### 2.1 fdisk的基本语法和选项 fdisk是一个命令行工具,用于管理磁盘和分区。其基本语法如下: ``` fdisk [选项] [设备] ``` 其中: - `选项`:指定fdisk的操作,如创建、删除或调整分区。 - `设备`:要操作的磁盘或分区。 fdisk提供了以下主要选项: | 选项 | 描述 | |---|---| | `-l` | 列出磁盘和分区信息 | | `-c` | 创建新分区 | | `-d` | 删除分区 | | `-s` | 调整分区大小 | ### 2.1.1 创建和删除分区 要创建新分区,请使用`-c`选项,后跟分区类型和大小。分区类型可以是`primary`(主分区)、`extended`(扩展分区)或`logical`(逻辑分区)。大小可以指定为字节、扇区或百分比。 例如,要创建大小为100GB的新主分区,可以使用以下命令: ``` fdisk -c primary 100GB /dev/sda ``` 要删除分区,请使用`-d`选项,后跟分区号。分区号可以在使用`-l`选项列出磁盘信息时获得。 例如,要删除分区号为1的分区,可以使用以下命令: ``` fdisk -d 1 /dev/sda ``` ### 2.1.2 调整分区大小 要调整分区大小,请使用`-s`选项,后跟分区号和新大小。新大小可以指定为字节、扇区或百分比。 例如,要将分区号为1的分区大小调整为200GB,可以使用以下命令: ``` fdisk -s 1 200GB /dev/sda ``` ### 2.2 fdisk的实战应用 #### 2.2.1 新建磁盘分区 **步骤:** 1. 确定要创建分区的磁盘。 2. 运行`fdisk`命令,后跟磁盘设备。 3. 使用`-c`选项创建新分区。 4. 指定分区类型和大小。 5. 使用`w`命令保存更改并退出fdisk。 **示例:** ``` fdisk /dev/sda -c primary 100GB w ``` #### 2.2.2 调整分区大小和格式化 **步骤:** 1. 确定要调整大小的分区。 2. 运行`fdisk`命令,后跟磁盘设备。 3. 使用`-s`选项调整分区大小。 4. 使用`w`命令保存更改并退出fdisk。 5. 使用`mkfs`命令格式化分区。 **示例:** ``` fdisk /dev/sda -s 1 200GB w mkfs -t ext4 /dev/sda1 ``` #
corwn 最低0.47元/天 解锁专栏
买1年送3月
点击查看下一篇
profit 百万级 高质量VIP文章无限畅学
profit 千万级 优质资源任意下载
profit C知道 免费提问 ( 生成式Al产品 )

相关推荐

郑天昊

首席网络架构师
拥有超过15年的工作经验。曾就职于某大厂,主导AWS云服务的网络架构设计和优化工作,后在一家创业公司担任首席网络架构师,负责构建公司的整体网络架构和技术规划。
最低0.47元/天 解锁专栏
买1年送3月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )

最新推荐

K-近邻算法多标签分类:专家解析难点与解决策略!

![K-近邻算法(K-Nearest Neighbors, KNN)](https://techrakete.com/wp-content/uploads/2023/11/manhattan_distanz-1024x542.png) # 1. K-近邻算法概述 K-近邻算法(K-Nearest Neighbors, KNN)是一种基本的分类与回归方法。本章将介绍KNN算法的基本概念、工作原理以及它在机器学习领域中的应用。 ## 1.1 算法原理 KNN算法的核心思想非常简单。在分类问题中,它根据最近的K个邻居的数据类别来进行判断,即“多数投票原则”。在回归问题中,则通过计算K个邻居的平均

【案例分析】:金融领域中类别变量编码的挑战与解决方案

![【案例分析】:金融领域中类别变量编码的挑战与解决方案](https://www.statology.org/wp-content/uploads/2022/08/labelencode2-1.jpg) # 1. 类别变量编码基础 在数据科学和机器学习领域,类别变量编码是将非数值型数据转换为数值型数据的过程,这一步骤对于后续的数据分析和模型建立至关重要。类别变量编码使得模型能够理解和处理原本仅以文字或标签形式存在的数据。 ## 1.1 编码的重要性 类别变量编码是数据分析中的基础步骤之一。它能够将诸如性别、城市、颜色等类别信息转换为模型能够识别和处理的数值形式。例如,性别中的“男”和“女

神经网络硬件加速秘技:GPU与TPU的最佳实践与优化

![神经网络硬件加速秘技:GPU与TPU的最佳实践与优化](https://static.wixstatic.com/media/4a226c_14d04dfa0e7f40d8b8d4f89725993490~mv2.png/v1/fill/w_940,h_313,al_c,q_85,enc_auto/4a226c_14d04dfa0e7f40d8b8d4f89725993490~mv2.png) # 1. 神经网络硬件加速概述 ## 1.1 硬件加速背景 随着深度学习技术的快速发展,神经网络模型变得越来越复杂,计算需求显著增长。传统的通用CPU已经难以满足大规模神经网络的计算需求,这促使了

自然语言处理新视界:逻辑回归在文本分类中的应用实战

![自然语言处理新视界:逻辑回归在文本分类中的应用实战](https://aiuai.cn/uploads/paddle/deep_learning/metrics/Precision_Recall.png) # 1. 逻辑回归与文本分类基础 ## 1.1 逻辑回归简介 逻辑回归是一种广泛应用于分类问题的统计模型,它在二分类问题中表现尤为突出。尽管名为回归,但逻辑回归实际上是一种分类算法,尤其适合处理涉及概率预测的场景。 ## 1.2 文本分类的挑战 文本分类涉及将文本数据分配到一个或多个类别中。这个过程通常包括预处理步骤,如分词、去除停用词,以及特征提取,如使用词袋模型或TF-IDF方法

市场营销的未来:随机森林助力客户细分与需求精准预测

![市场营销的未来:随机森林助力客户细分与需求精准预测](https://images.squarespace-cdn.com/content/v1/51d98be2e4b05a25fc200cbc/1611683510457-5MC34HPE8VLAGFNWIR2I/AppendixA_1.png?format=1000w) # 1. 市场营销的演变与未来趋势 市场营销作为推动产品和服务销售的关键驱动力,其演变历程与技术进步紧密相连。从早期的单向传播,到互联网时代的双向互动,再到如今的个性化和智能化营销,市场营销的每一次革新都伴随着工具、平台和算法的进化。 ## 1.1 市场营销的历史沿

预测模型中的填充策略对比

![预测模型中的填充策略对比](https://img-blog.csdnimg.cn/20190521154527414.PNG?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3l1bmxpbnpp,size_16,color_FFFFFF,t_70) # 1. 预测模型填充策略概述 ## 简介 在数据分析和时间序列预测中,缺失数据是一个常见问题,这可能是由于各种原因造成的,例如技术故障、数据收集过程中的疏漏或隐私保护等原因。这些缺失值如果

CNN背后的世界:揭秘特征提取与内部工作机制的可视化技术

![CNN背后的世界:揭秘特征提取与内部工作机制的可视化技术](https://risgupta.com/images/2020-10-07-cnn_filter_visualization_files/2020-10-07-cnn_filter_visualization_10_0.png) # 1. 深度学习与卷积神经网络(CNN) 随着深度学习的兴起,卷积神经网络(CNN)已经成为图像识别和处理领域的核心技术之一。本章将作为整个文章的引入部分,对深度学习和CNN进行概述,为读者提供一个理解和探索CNN内部工作机制的基础。 ## 1.1 深度学习概述 深度学习是一种利用多层神经网络进行

支持向量机在语音识别中的应用:挑战与机遇并存的研究前沿

![支持向量机](https://img-blog.csdnimg.cn/img_convert/dc8388dcb38c6e3da71ffbdb0668cfb0.png) # 1. 支持向量机(SVM)基础 支持向量机(SVM)是一种广泛用于分类和回归分析的监督学习算法,尤其在解决非线性问题上表现出色。SVM通过寻找最优超平面将不同类别的数据有效分开,其核心在于最大化不同类别之间的间隔(即“间隔最大化”)。这种策略不仅减少了模型的泛化误差,还提高了模型对未知数据的预测能力。SVM的另一个重要概念是核函数,通过核函数可以将低维空间线性不可分的数据映射到高维空间,使得原本难以处理的问题变得易于

决策树在金融风险评估中的高效应用:机器学习的未来趋势

![决策树在金融风险评估中的高效应用:机器学习的未来趋势](https://learn.microsoft.com/en-us/sql/relational-databases/performance/media/display-an-actual-execution-plan/actualexecplan.png?view=sql-server-ver16) # 1. 决策树算法概述与金融风险评估 ## 决策树算法概述 决策树是一种被广泛应用于分类和回归任务的预测模型。它通过一系列规则对数据进行分割,以达到最终的预测目标。算法结构上类似流程图,从根节点开始,通过每个内部节点的测试,分支到不

梯度下降在线性回归中的应用:优化算法详解与实践指南

![线性回归(Linear Regression)](https://img-blog.csdnimg.cn/20191008175634343.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MTYxMTA0NQ==,size_16,color_FFFFFF,t_70) # 1. 线性回归基础概念和数学原理 ## 1.1 线性回归的定义和应用场景 线性回归是统计学中研究变量之间关系的常用方法。它假设两个或多个变