Unix系统中的进程调度算法原理解析

发布时间: 2024-02-24 08:28:32 阅读量: 76 订阅数: 27
# 1. Unix系统中的进程调度简介 Unix系统作为一种多用户、多任务操作系统,进程调度对系统的性能和响应速度至关重要。本章将介绍Unix系统中的进程调度相关概念、作用以及不同类型的进程调度算法。 ## 1.1 Unix系统中的进程概念 在Unix系统中,进程是程序的执行实例。每个进程都有自己的地址空间、数据栈和控制信息。Unix系统采用了多进程并发模型,允许多个进程同时运行,通过进程间通信来实现各种功能。 ## 1.2 进程调度的作用和重要性 进程调度是操作系统的核心功能之一,它负责决定哪些进程在何时执行,并分配系统资源给这些进程。合理的进程调度能够提高系统的吞吐量、降低响应时间,从而提升系统的整体性能。 ## 1.3 进程调度算法的分类 进程调度算法可以分为多种类型,常见的包括先来先服务(FCFS)调度算法、最短作业优先(SJF)调度算法、优先级调度算法和时间片轮转调度算法。不同的调度算法适用于不同的场景,可以根据具体需求来选择合适的算法进行调度。 # 2. 进程调度算法概述 在Unix系统中,进程调度算法是操作系统中的重要组成部分,它决定了各个进程在CPU上执行的顺序和时间,直接影响到系统的性能和资源利用率。进程调度算法可以根据不同的策略和需求,选择不同的调度方式,下面我们将介绍几种常见的进程调度算法。 ### 2.1 先来先服务(FCFS)调度算法 先来先服务(First-Come, First-Served,FCFS)调度算法是最简单的一种调度算法,即按照进程到达的先后顺序进行排队,CPU依次执行队首的进程。这种算法的优点是实现简单,没有调度开销,缺点是平均等待时间较长,会导致长作业等待时间过长的问题。 ```java // Java代码示例 public class FCFS { public static void main(String[] args) { int[] arrivalTime = {0, 1, 2, 3}; // 进程到达时间 int[] burstTime = {6, 4, 7, 3}; // 进程服务时间 int n = arrivalTime.length; int[] waitingTime = new int[n]; double totalWaitingTime = 0; waitingTime[0] = 0; // 第一个进程的等待时间为0 for (int i = 1; i < n; i++) { waitingTime[i] = waitingTime[i-1] + burstTime[i-1]; // 等待时间累加 } for (int i = 0; i < n; i++) { totalWaitingTime += waitingTime[i]; } double averageWaitingTime = totalWaitingTime / n; System.out.println("平均等待时间:" + averageWaitingTime); } } ``` 上述代码是一个使用Java语言实现的先来先服务调度算法的示例,计算平均等待时间。通过该算法,我们可以清晰地看到每个进程的等待时间,并计算出平均等待时间,进而分析其效率和适用性。 ### 2.2 最短作业优先(SJF)调度算法 最短作业优先(Shortest Job First,SJF)调度算法是一种非抢占式的调度算法,它会优先选择执行时间最短的进程。这种算法的优点是能够最大程度地减少平均等待时间,缺点是可能会导致长作业饥饿现象。 ```python # Python代码示例 def sjf(arrival_time, burst_time): n = len(arrival_time) start_time = [0] * n waiting_time = [0] * n total_waiting_time = 0 remaining_time = [0] * n for i in range(n): remaining_time[i] = burst_time[i] complete = 0 t = 0 min_burst = float('inf') shortest = 0 check = False while complete != n: for j in ran ```
corwn 最低0.47元/天 解锁专栏
买1年送1年
点击查看下一篇
profit 百万级 高质量VIP文章无限畅学
profit 千万级 优质资源任意下载
profit C知道 免费提问 ( 生成式Al产品 )

相关推荐

吴雄辉

高级架构师
10年武汉大学硕士,操作系统领域资深技术专家,职业生涯早期在一家知名互联网公司,担任操作系统工程师的职位负责操作系统的设计、优化和维护工作;后加入了一家全球知名的科技巨头,担任高级操作系统架构师的职位,负责设计和开发新一代操作系统;如今为一名独立顾问,为多家公司提供操作系统方面的咨询服务。
专栏简介
该专栏《Unix操作系统基础》全面介绍了Unix操作系统的核心概念及基础知识,内容涵盖了Unix操作系统的简介与基本概念解析、用户和权限管理、常用命令行工具、Shell编程入门、进程管理与控制、信号处理机制、文本处理工具、正则表达式应用、定时任务调度和进程调度算法。通过逐一解析这些主题,读者能够深入理解Unix操作系统的基本原理和功能,掌握使用Unix系统的关键技能,为进一步学习Unix系统编程和管理打下扎实的基础。无论是初学者还是有一定经验的用户,都能从本专栏中获益良多,提高对Unix操作系统的认识和应用能力。
最低0.47元/天 解锁专栏
买1年送1年
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )

最新推荐

绿色计算新篇:AMI VeB白皮书中的虚拟化技术革新

![绿色计算新篇:AMI VeB白皮书中的虚拟化技术革新](https://network-insight.net/wp-content/uploads/2015/09/rsz_nfv_.png) 参考资源链接:[VeB白皮书:AMIVisual eBIOS图形固件开发环境详解](https://wenku.csdn.net/doc/6412b5cabe7fbd1778d44684?spm=1055.2635.3001.10343) # 1. 虚拟化技术的演进与绿色计算的兴起 ## 1.1 虚拟化技术的历史演进 虚拟化技术的起源可以追溯到20世纪60年代的IBM大型机,它使得一台物理主机能

PLS UDE UAD扩展功能探索:插件与模块使用深度解析

![PLS UDE UAD扩展功能探索:插件与模块使用深度解析](https://community.st.com/t5/image/serverpage/image-id/33076i1D59E5B64AED3828/image-size/large?v=v2&px=999) 参考资源链接:[UDE入门:Tricore多核调试详解及UAD连接步骤](https://wenku.csdn.net/doc/6412b6e5be7fbd1778d485ca?spm=1055.2635.3001.10343) # 1. PLS UDE UAD基础介绍 在当今充满活力的信息技术领域,PLS UDE

虚拟现实集成:3DSource零件库设计体验的新维度

![虚拟现实集成:3DSource零件库设计体验的新维度](https://www.viar360.com/wp-content/uploads/2018/08/oculus-go-1024x576.jpg) 参考资源链接:[3DSource零件库在线版:CAD软件集成的三维标准件库](https://wenku.csdn.net/doc/6wg8wzctvk?spm=1055.2635.3001.10343) # 1. 虚拟现实技术与3D Source概述 ## 虚拟现实技术基础 虚拟现实(VR)技术通过创造三维的计算机模拟环境,让用户能够沉浸在一个与现实世界完全不同的空间。随着硬件设备

【Python pip安装包的版本控制】:精确管理依赖版本的专家指南

![【Python pip安装包的版本控制】:精确管理依赖版本的专家指南](https://blog.finxter.com/wp-content/uploads/2023/03/image-212-1024x550.png) 参考资源链接:[Python使用pip安装报错ModuleNotFoundError: No module named ‘pkg_resources’的解决方法](https://wenku.csdn.net/doc/6412b4a3be7fbd1778d4049f?spm=1055.2635.3001.10343) # 1. Python pip安装包管理概述 P

Calibre XRC:性能优化秘籍,验证速度提升的实用技巧大公开

![Calibre XRC:性能优化秘籍,验证速度提升的实用技巧大公开](https://www.eda-solutions.com/app/uploads/2020/06/c-xrc-integration-scaled-900x0-c-default.jpg) 参考资源链接:[Calibre XRC:寄生参数提取与常用命令详解](https://wenku.csdn.net/doc/6412b4d3be7fbd1778d40f58?spm=1055.2635.3001.10343) # 1. Calibre XRC简介 在现代集成电路设计与验证中,Calibre XRC已经成为不可或缺

GMW 3172-2018旧版对比深度分析:新旧差异一目了然

![GMW 3172-2018](https://www.sterlingperformance.org/wp-content/uploads/2022/03/Thermal_Shock_testing.jpg) 参考资源链接:[【最新版】 GMW 3172-2018.pdf](https://wenku.csdn.net/doc/3vqich9nps?spm=1055.2635.3001.10343) # 1. GMW 3172-2018标准概述 在当今技术日益发展的时代,汽车行业标准的制定和更新显得尤为重要,它确保了汽车零部件的质量与安全,为制造商和消费者提供了共同的参照。GMW 31

环境化学研究新工具:Avogadro模拟污染物行为实操

![环境化学研究新工具:Avogadro模拟污染物行为实操](https://i2.wp.com/bioengineer.org/wp-content/uploads/2018/12/Quantum-chemical-calculations-on-quantum-computers.jpg?w=1170&ssl=1) 参考资源链接:[Avogadro中文教程:分子建模与可视化全面指南](https://wenku.csdn.net/doc/6b8oycfkbf?spm=1055.2635.3001.10343) # 1. 环境化学研究中模拟工具的重要性 环境化学研究中,模拟工具已成为不可

【奔图打印机错误代码解读】:全面解析及解决方法,让故障无所遁形

参考资源链接:[奔图打印机故障排除指南:卡纸、颜色浅、斑点与重影问题解析](https://wenku.csdn.net/doc/647841b8d12cbe7ec32e0260?spm=1055.2635.3001.10343) # 1. 奔图打印机错误代码概述 在现代办公环境中,打印机作为重要的输出设备,其稳定性和效率直接影响工作流程。奔图(Pantum)打印机作为市场上的一个重要品牌,虽然其产品性能稳定,但也无法完全避免发生故障。错误代码是打印机在遇到问题时给出的一种直观反馈,通过解读这些代码,用户可以快速定位问题并采取相应措施解决。 本章我们将对奔图打印机错误代码进行一个概览性的介

V90 EPOS模式回零适应性:极端环境下的稳定运行分析

![EPOS模式回零](https://img-blog.csdnimg.cn/direct/1fdebfedf2af46b5b8903e182d96701d.png) 参考资源链接:[V90 EPOS模式下增量/绝对编码器回零方法详解](https://wenku.csdn.net/doc/6412b48abe7fbd1778d3ff04?spm=1055.2635.3001.10343) # 1. V90 EPOS模式回零的原理与必要性 ## 1.1 EPOS模式回零的基本概念 EPOS(电子位置设定)模式回零是指在电子控制系统中,自动或手动将设备的位置设定到初始的或预定的位置。这种机

【74HC154引脚故障排除:快速修复指南】:引脚问题一网打尽

![74HC154](https://wp.7robot.net/wp-content/uploads/2020/04/Portada_Multiplexores.jpg) 参考资源链接:[74HC154详解:4线-16线译码器的引脚功能与应用](https://wenku.csdn.net/doc/32hp07jvry?spm=1055.2635.3001.10343) # 1. 引言 在当代电子工程领域,半导体器件扮演着不可或缺的角色。其中,逻辑门集成电路因其强大的信号处理能力,在各种电子设备中广泛被采用。74HC154是一个具有4到16线解码器功能的CMOS(互补金属氧化物半导体)芯