Java.lang与多线程实战:Thread类使用与线程安全策略

发布时间: 2024-09-24 17:06:20 阅读量: 145 订阅数: 44
PDF

Java多线程-创建多线程的基本方式一:继承Thread类

![Java.lang与多线程实战:Thread类使用与线程安全策略](https://img-blog.csdnimg.cn/20200723213803376.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L01yc19ZdQ==,size_16,color_FFFFFF,t_70) # 1. Java.lang与多线程基础 Java.lang 是 Java 程序设计语言的基础包,包含了 Java 程序运行时的核心类,其中的 Object 类和 Thread 类是与多线程编程密切相关的两个基础类。多线程编程是指同时运行多个线程来执行多个任务,这可以显著提升程序处理复杂任务的能力,特别是对于那些可以分解为多个子任务的计算密集型或者I/O密集型操作。 ## 1.1 Java.lang包中的多线程支持 在 Java.lang 包中,有两个类直接支持多线程编程:Thread 和 Runnable。Thread 类代表了一个线程的实例,而 Runnable 是一个接口,规定了线程需要执行的 run 方法。通过实现 Runnable 接口并将其传递给 Thread 对象,可以让 Java 虚拟机管理线程的生命周期。 ```java class MyThread extends Thread { public void run() { // 线程执行的代码 } } class MyRunnable implements Runnable { public void run() { // 线程执行的代码 } } // 创建线程实例并启动线程 MyThread t = new MyThread(); t.start(); MyRunnable r = new MyRunnable(); Thread t2 = new Thread(r); t2.start(); ``` ## 1.2 Java.lang包中的线程同步机制 除了线程创建和执行的机制之外,Java.lang 包还提供了一些用于线程同步的机制,比如关键字 synchronized。synchronized 可以用来控制对共享资源的并发访问,保证同一时刻只有一个线程可以访问该资源。此外,volatile 关键字也用于指示变量是易变的,确保线程每次从主内存读取变量的值,而不是使用线程私有的变量副本。 ```java public class Counter { private volatile int count = 0; public synchronized void increment() { count++; } public synchronized int getCount() { return count; } } ``` 在上述代码中,increment 和 getCount 方法都使用了 synchronized 关键字,确保了 count 的访问是线程安全的。 通过掌握 Java.lang 中的多线程基础,我们可以构建出更复杂、高效的并发程序,为深入理解多线程编程奠定坚实的基础。在后续章节中,我们将详细探讨如何使用 Thread 类及其相关技巧,深入分析线程安全问题,并在实战案例中应用这些知识。 # 2. Thread类的核心使用技巧 在第二章中,我们将深入了解Java中Thread类的核心使用技巧。Thread是Java语言中用于处理多线程的基础类之一。掌握Thread类的使用,对于编写高效的多线程应用程序至关重要。本章将通过创建和启动线程、Thread类的常用方法与属性、以及线程的生命周期与中断机制这三个子章节,带你深入Thread类的核心特性。 ## 2.1 创建和启动线程 Thread类提供了两种主要的方式用于创建和启动线程:继承Thread类的方式和实现Runnable接口的方式。下面分别介绍这两种方法,并展示具体的实现示例。 ### 2.1.1 继承Thread类的方式 继承Thread类是创建线程最直接的方式。通过继承Thread类,您可以重写run方法来定义线程要执行的任务。以下是继承Thread类创建线程的基本步骤: ```java class MyThread extends Thread { @Override public void run() { System.out.println("线程执行的任务"); } } public class ThreadExample { public static void main(String[] args) { MyThread thread = new MyThread(); thread.start(); // 启动线程 } } ``` 在上述代码中,`MyThread` 类通过继承 `Thread` 类,并重写 `run` 方法来定义了线程的具体操作。`start` 方法的作用是调用底层平台相关的代码来创建一个新的线程,然后在新线程中调用 `MyThread` 对象的 `run` 方法。 ### 2.1.2 实现Runnable接口的方式 实现Runnable接口是另一种常见的创建线程的方式。这种方式更加灵活,因为它允许您继承其他类的同时,又可以实现多线程。以下是实现Runnable接口创建线程的基本步骤: ```java class MyRunnable implements Runnable { @Override public void run() { System.out.println("线程执行的任务"); } } public class RunnableExample { public static void main(String[] args) { Thread thread = new Thread(new MyRunnable()); thread.start(); // 启动线程 } } ``` 在这个例子中,`MyRunnable` 类实现了 `Runnable` 接口,并在 `run` 方法中定义了线程的操作。然后通过 `Thread` 类的构造函数传入一个 `Runnable` 的实现,从而创建并启动线程。这种方式的好处是能够将任务与线程执行机制分离,使得代码更加清晰和灵活。 ## 2.2 Thread类的常用方法与属性 Thread类提供了一系列的常用方法和属性用于管理线程的执行状态、调整线程优先级等。本节将重点介绍线程状态的获取与控制、线程优先级的设置与调整这两个方面。 ### 2.2.1 线程状态的获取与控制 Thread类提供了一系列的常量用于表示线程的不同状态: - `NEW`:尚未启动的线程状态。 - `RUNNABLE`:运行中的线程状态。 - `BLOCKED`:线程阻塞等待监视器锁的状态。 - `WAITING`:无限期等待其他线程执行特定操作的状态。 - `TIMED_WAITING`:有时限等待其他线程执行操作的状态。 - `TERMINATED`:线程终止的状态。 获取线程状态可以通过调用`getState()`方法来实现,控制线程状态通常涉及到线程的暂停、恢复、停止等操作,例如: ```java Thread thread = new Thread(new MyRunnable()); thread.start(); // 在某些条件下,挂起当前线程执行 thread.suspend(); // 恢复被挂起的线程 thread.resume(); // 停止线程 thread.stop(); // 注意:Thread.stop()方法已过时,不建议使用 ``` ### 2.2.2 线程优先级的设置与调整 线程优先级通过Thread类中的`getPriority()`和`setPriority(int newPriority)`方法来获取和设置。优先级的范围是从1(最低优先级)到10(最高优先级)。默认情况下,每个线程的优先级都设置为`Thread.NORM_PRIORITY`,其值为5。 设置线程优先级可以帮助操作系统决定哪个线程可以优先被执行,但请注意,这并不意味着高优先级的线程会绝对优先执行。线程调度器会根据实际的平台依赖性来决定线程的调度。 ```java Thread thread = new Thread(new MyRunnable()); thread.setPriority(Thread.MAX_PRIORITY); // 设置为最高优先级 thread.start(); ``` ## 2.3 线程的生命周期与中断机制 理解线程的生命周期是管理多线程程序的重要一环,它帮助我们了解线程从创建到终止的全过程。此外,线程中断机制为线程提供了协调运行和终止运行的能力。 ### 2.3.1 理解线程的生命周期 Java线程的生命周期主要包含以下状态:新建(New)、就绪(Runnable)、运行(Running)、阻塞(Blocked)、等待(Waiting)、超时等待(Timed Waiting)、终止(Terminated)。以下图示展示了线程生命周期中状态转换的过程: ```mermaid graph LR A[新建 New] -->|调用start()| B[就绪 Runnable] B -->|调度器调度| C[运行 Running] C -->|时间片耗尽| B C -->|IO操作或锁等待| D[阻塞 Blocked] C -->|等待其他线程通知| E[等待 Waiting] C -->|等待指定时间| F[超时等待 Timed Waiting] D -->|获取到锁或线程被中断| B E -->|接收到通知| B F -->|时间耗尽| B C -->|正常结束或被中断| G[终止 Terminated] ``` - **新建(New)**: 线程刚被创建,但还未启动时的状态。 - **就绪(Runnable)**: 线程准备好了,等待CPU调度执行。 - **运行(Running)**: 线程的指令正在执行的状态。 - **阻塞(Blocked)**: 线程因为某些原因放弃了CPU的执行权,暂时停止运行。 - **等待(Waiting)**: 线程进入到等待状态,等待其他线程执行特定操作。 - **超时等待(Timed Waiting)**: 线程处于等待状态,但等待时间有限。 - **终止(Terminated)**: 线程执行结束,生命周期终结。 ### 2.3.2 线程中断的正确处理方式 线程中断是多线程编程中一个重要的功能,允许一个线程通知另一个线程停止当前工作。线程中断的实现是通过Thread类中的中断机制来完成的。 当一个线程调用`interrupt()`方法时,线程的中断状态将被设置为`true`。线程可以定期检查中断状态,以决定是否需要停止运行。 ```java Thread thread = new Thread(() -> { while (!Thread.currentThread().isInterrupted()) { // 执行任务 } System.out.println("线程因中断而结束"); }); thread.start(); // 模拟中断线程 thread.interrupt(); ``` 在上述代码中,线程在运行时不断检查自己的中断状态。一旦被中断,则退出循环,线程执行结束。 需要注意的是,中断并不能直接停止线程,而是给线程发出一个中断信号。线程需要自己定期检查中断状态,并进行适当的处理。 以上内容对Thread类的核心使用技巧进行了详细的介绍。在掌握这些基础知识后,您将能够更加灵活和高效地管理Java中的多线程环境。在下一章中,我们将深入探讨线程安全问题及其解决方案。 # 3. 深入理解线程安全问题 线程安全是多线程编程中一个核心且复杂的议题。为确保数据在并发访问的情况下保持一致性和准确性,理解线程安全的概念、策略及其实现方式至关重要。 ## 3.1 线程安全的基本概念 ### 3.1.1 什么是线程安全 线程安全是指当多个线程访问某个类时,如果每个线程都可以获得正确的结果,那么这个类就是线程安全的。通常,在不加任何同步措施的情况下,多个线程同时操作同一个资源可能会引发数据不一致的问题。因此,确保线程安全是多线程编程中的一个关键任务。 ### 3.1.2 线程安全问题的表现 线程安全问题通常在多个线程同时访问共享资源时表现出来。例如,如果两个线程同时向同一个银行账户存款,不正确的线程安全控制可能会导致最终账户的存款金额少于实际存款总和。为了防止此类问题的发生,可以采取多种线程安全策略。 ## 3.2
corwn 最低0.47元/天 解锁专栏
买1年送3月
点击查看下一篇
profit 百万级 高质量VIP文章无限畅学
profit 千万级 优质资源任意下载
profit C知道 免费提问 ( 生成式Al产品 )

相关推荐

SW_孙维

开发技术专家
知名科技公司工程师,开发技术领域拥有丰富的工作经验和专业知识。曾负责设计和开发多个复杂的软件系统,涉及到大规模数据处理、分布式系统和高性能计算等方面。
专栏简介
“java.lang库入门介绍与使用”专栏深入探讨了Java语言的核心库,全面解析其20年的发展历程。专栏涵盖了从入门到高级的各种主题,包括: * Java.lang库的深度剖析,揭示其背后的秘密 * 实用手册,提供从入门到专家的全方位技术指南 * 解决常见问题的最佳实践案例 * String类等高级用法的详细解析 * Object类及其应用场景的全面介绍 * try-catch机制的深层解读与优化 * System类使用与自定义设置技巧 * Math库的数学运算原理与效率提升策略 * Class类的动态世界,涵盖类加载与反射 * Comparable与Comparator接口的实战指南 * Thread类使用与线程安全策略 * 垃圾回收机制的深入探索 * List、Set与Map底层实现原理 * Calendar与Date类的使用 * ExecutorService与Future的深入实践 * 数组操作效率与性能提升策略 * Pattern与Matcher的高效使用指南 * System.in、out与err的优化技巧 * ThreadMXBean与StackWalking的调试与诊断
最低0.47元/天 解锁专栏
买1年送3月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )

最新推荐

【台达PLC精通之路】:从新手到专家的7个秘诀

![【台达PLC精通之路】:从新手到专家的7个秘诀](https://img-blog.csdnimg.cn/e096248b2b6345659a5968e18d4d8a54.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L1gwX0ltUGVSaWFs,size_16,color_FFFFFF,t_70) # 摘要 台达PLC(可编程逻辑控制器)作为自动化控制领域的重要设备,其在工业自动化及能源管理中的应用正变得日益广泛。本文首先介绍

【性能优化攻略】:LAN Portal软件性能调优的五大策略

![【性能优化攻略】:LAN Portal软件性能调优的五大策略](https://wcedeportal.co.za/sites/eresources/files/LAN_2.jpg) # 摘要 随着信息技术的快速发展,LAN Portal软件在企业网络中的应用日益广泛,其性能优化成为提升网络效率和质量的关键。本文全面概述了LAN Portal软件性能优化的各个方面,包括性能监控与评估的基础知识、网络层面的调优策略、系统资源的优化管理以及高级调优技巧。文章重点分析了性能监控工具的选择和应用,关键性能指标(KPIs)的定义,以及不同层次(网络架构、传输层、应用层)的性能优化方法。此外,还探讨

SV660N通讯中断速查手册:一分钟快速诊断与解决技巧

![SV660N系列伺服通讯手册-CN-C01.PDF](https://www.haascnc.com/content/dam/haascnc/service/guides/troubleshooting/sigma-1---axis-servo-motor-and-cables---troubleshooting-guide/servo_amplifier_electrical_schematic_Rev_B.png) # 摘要 SV660N通讯中断问题在工业自动化和控制系统中是一个常见且需要迅速解决的问题。本文全面概述了通讯中断的概念、产生原因、类型识别、快速诊断技巧、解决方法和案例分

电磁兼容性不再困扰:电力电子应用中的6大解决策略

![电磁兼容性不再困扰:电力电子应用中的6大解决策略](https://www.prometec.net/wp-content/uploads/2018/06/FiltroLC.jpg) # 摘要 电磁兼容性是电力电子系统稳定运行的关键因素之一,其涉及电磁干扰的源起、传播及其对系统性能的影响。本文系统地探讨了电磁干扰的基础理论、电磁兼容性的概念和设计原则,以及电磁干扰的测量与评估方法。进一步地,本文分析了在电路设计阶段实施的预防措施,包括布局优化、屏蔽技术、滤波器设计、接地策略以及隔离与转换技术。在控制技术实践章节中,本文强调了电磁屏蔽技术的应用、信号完整性和电源管理、以及频谱管理与定制化滤

深度解析Origin9.0图形数据处理:7步骤彻底移除流程

![深度解析Origin9.0图形数据处理:7步骤彻底移除流程](https://opengraph.githubassets.com/b6600b7e1ea627b8166f2d03a24e85589436b2beb77da0d9543e8f4bd2282a11/Rmillansol/Import-OriginPro-File-To-Matlab) # 摘要 Origin9.0是一款广泛应用于科研领域的图形数据处理软件,本文旨在详细介绍其在数据导入、图形处理、高级数据分析以及个性化定制与自动化方面的功能和应用。首先概述Origin9.0的基本操作,包括数据导入和初步处理的方法,然后深入探讨

【小车运动学仿真新手入门】:跟随专家逐步搭建模拟环境

![【小车运动学仿真新手入门】:跟随专家逐步搭建模拟环境](https://www.mathworks.com/company/technical-articles/using-sensitivity-analysis-to-optimize-powertrain-design-for-fuel-economy/_jcr_content/mainParsys/image_1876206129.adapt.full.medium.jpg/1487569919249.jpg) # 摘要 本文综合分析了小车运动学仿真技术,从运动学基础理论出发构建了二维和三维运动模型。详细探讨了仿真环境的选择和搭建

【PyTorch手势识别入门篇】:搭建基础环境及项目框架搭建

# 摘要 本文旨在介绍PyTorch框架在手势识别领域的应用。文章首先概述了手势识别技术的重要性及其在人机交互和虚拟现实中的应用前景。接着,文章详细介绍了PyTorch的基础知识,包括其核心组件如张量(Tensor)、自动微分机制和计算图,以及安装配置的细节,包括版本选择、环境搭建及验证。第三部分阐述了构建手势识别项目框架的步骤,涵盖了数据准备、模型基础结构设计及代码组织。第四章讲述了模型训练与评估的策略和方法。最后,本文分析了手势识别技术的实战应用案例,并对其未来的发展趋势进行了展望,探讨了技术创新和新兴领域中的应用潜力。 # 关键字 PyTorch;手势识别;神经网络;数据增强;模型训练

【速度提升】:安川机器人IO响应优化,操作更快更稳定

![【速度提升】:安川机器人IO响应优化,操作更快更稳定](https://opengraph.githubassets.com/44dfd4b7cd8a030ad4e104e259c03b98eafcb8a608435fe6a5c420669958c6ab/yudarw/YASKAWA-Robot-Teleoperation) # 摘要 安川机器人的IO响应性能对于确保其运行效率和精确度至关重要。本文旨在探讨IO响应优化的理论与实践操作,并评估优化的实际效果。首先,我们介绍了IO响应的基本原理及影响其时间的关键因素。随后,构建了IO响应优化的理论框架,包括理论模型分析和优化策略。在实践操作

ZXV10 T800数据保护黄金法则:系统备份与恢复的最佳实践

![ZXV10 T800数据保护黄金法则:系统备份与恢复的最佳实践](https://www.ubackup.com/screenshot/en/others/windows-server-2019-incremental-backup/incremental-backup-image.png) # 摘要 本文对ZXV10 T800数据保护方案进行了全面的概述、分析与实践案例探讨。首先,从理论基础出发,阐述了系统备份的重要性、备份策略与技术原理,并详细介绍了系统恢复的策略、技术细节以及在实施过程中遇到的挑战和解决方案。通过实战案例,本文展示了备份与恢复任务的部署和流程优化,以及在实践中取得的
最低0.47元/天 解锁专栏
买1年送3月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )