Java 面试八股文2023:设计模式概述与常见应用

发布时间: 2024-04-09 21:40:17 阅读量: 46 订阅数: 23
DOCX

面试常考设计模式(JAVA)

# 1. 设计模式基础概念 ## 1.1 设计模式简介 设计模式是在软件开发过程中对一类常见问题的通用解决方案。它是解决软件设计中常见问题的最佳实践经验的总结,是经验的提炼和抽象。设计模式提供了一套通用的设计方案,帮助我们更好地应对变化、提高代码质量、增加代码的可重用性和可维护性。 ## 1.2 为什么要使用设计模式 - 提高代码的重用性:设计模式可帮助我们避免重复编写相同的代码 - 提高代码的可维护性:设计模式提供了良好的代码组织结构,使代码的可读性更强 - 降低代码的耦合性:通过设计模式,不同的部分之间的依赖关系更加清晰 - 促进代码的扩展性:设计模式可以使系统更容易扩展新功能 ## 1.3 设计模式的分类 设计模式一般分为三种主要类型: - **创建型设计模式**:用于处理对象的创建机制,包括单例模式、工厂模式、抽象工厂模式等 - **结构型设计模式**:处理对象之间的组合,包括适配器模式、装饰器模式、代理模式等 - **行为型设计模式**:描述对象间的协作和职责分配,包括观察者模式、策略模式、模板方法模式等 通过以上概述,我们对设计模式的基础概念有了一定的了解。接下来,我们将深入探讨各种设计模式的具体应用及重要性。 # 2. 创建型设计模式 ### 2.1 单例模式 - **定义**:确保一个类只有一个实例,并提供全局访问点。 - **应用场景**:需要全局访问点的场景,如配置信息、日志记录等。 #### 单例模式示例代码(Java): ```java public class Singleton { private static Singleton instance; private Singleton() {} public static Singleton getInstance() { if (instance == null) { instance = new Singleton(); } return instance; } } ``` - **优点**: - 节省内存资源,避免多次创建对象。 - 确保全局访问点,方便统一管理。 - **缺点**: - 可能会引起多线程安全问题。 ### 2.2 工厂模式 - **定义**:定义一个创建对象的接口,让子类决定实例化哪个类。 - **应用场景**:需要统一创建对象的场景,根据不同需求创建不同的实例。 #### 工厂模式示例代码(Java): ```java // 抽象产品 interface Product { void show(); } // 具体产品A class ConcreteProductA implements Product { public void show() { System.out.println("This is product A."); } } // 工厂 class Factory { public Product createProduct(String type) { if ("A".equals(type)) { return new ConcreteProductA(); } return null; } } ``` - **优点**: - 遵循开闭原则,新增产品无需修改现有代码。 - 将对象的创建和使用分离,降低耦合度。 - **缺点**: - 增加了类的数量,增加了系统的复杂度。 #### 工厂模式流程图: ```mermaid graph TD A[Client] -->|Request Product| B(Factory) B -->|Create Product| C{Product} C -->|Return Product| A ``` # 3. 结构型设计模式 结构型设计模式主要关注如何将类或对象结合在一起形成更大的结构,提供了一种简单的方法来实现对象组合。 ### 3.1 适配器模式 适配器模式是一种结构型设计模式,用于允许不兼容接口的类之间协同工作。通过适配器,客户端可以与不同接口的类进行交互,而不需要改变其源代码。 在适配器模式中,有三个主要角色: - 目标接口(Target):定义客户端使用的特定接口。 - 适配器(Adapter):实现目标接口,并包装一个被适配者的实例。 - 被适配者(Adaptee):已存在的类,包含客户端希望使用的功能,但其接口与目标接口不兼容。 下面是适配器模式的Java示例代码: ```java // 目标接口 interface Target { void request(); } // 被适配者 class Adaptee { public void specificRequest() { System.out.println("Adaptee's specific request"); } } // 适配器 class Adapter implements Target { private Adaptee adaptee; public Adapter(Adaptee adaptee) { this.adaptee = adaptee; } @Override public void request() { adaptee.specificRequest(); } } // 客户端代码 public class AdapterPatternExample { public static void main(String[] args) { Adaptee adaptee = new Adaptee(); Target adapter = new Adapter(adaptee); adapter.request(); } } ``` ### 3.2 装饰器模式 装饰器模式是一种结构型设计模式,允许向一个现有对象添加新功能,同时又不改变其结构。这种模式创建了一个装饰类,用于包装原有类,并提供额外的功能。 在装饰器模式中,有四个主要角色: - 抽象构件(Component):定义了原始对象和装饰对象的公共接口。 - 具体构件(ConcreteComponent):实现了抽象构件接口,是被装饰的原始对象。 - 抽象装饰器(Decorator):继承了抽象构件,并包含了一个指向抽象构件的引用。 - 具体装饰器(ConcreteDecorator):继承自抽象装饰器,负责向构件添加新的功能。 下面是装饰器模式的Python示例代码: ```python # 抽象构件 class Component: def operation(self): pass # 具体构件 class ConcreteComponent(Component): def operation(self): print("ConcreteComponent operation") # 抽象装饰器 class Decorator(Component): def __init__(self, component): self.component = component def operation(self): self.component.operation() # 具体装饰器 class ConcreteDecorator(Decorator): def operation(self): super().operation() print("Added new functionality") # 客户端代码 component = ConcreteComponent() decorator = ConcreteDecorator(component) decorator.operation() ``` ### 3.3 代理模式 代理模式是一种结构型设计模式,通过创建一个代理对象,代理可以控制对原始对象的访问。代理可以在访问原始对象前后进行一些额外的操作,如记录日志、权限验证等。 在代理模式中,有三个主要角色: - 抽象主题(Subject):定义了真实主题和代理的共同接口,客户端通过代理和真实主题交互。 - 真实主题(RealSubject):实现了抽象主题接口,是客户端直接调用的对象。 - 代理
corwn 最低0.47元/天 解锁专栏
买1年送3月
点击查看下一篇
profit 百万级 高质量VIP文章无限畅学
profit 千万级 优质资源任意下载
profit C知道 免费提问 ( 生成式Al产品 )

相关推荐

SW_孙维

开发技术专家
知名科技公司工程师,开发技术领域拥有丰富的工作经验和专业知识。曾负责设计和开发多个复杂的软件系统,涉及到大规模数据处理、分布式系统和高性能计算等方面。
专栏简介
“Java 面试八股文 2023”专栏汇集了 Java 技术面试的必备知识点,从入门基础到进阶应用,全面覆盖 Java 核心技术。专栏文章涵盖了面向对象编程、集合框架、多线程编程、IO 与 NIO、JVM 虚拟机、设计模式、Spring 框架、Spring Boot、Spring Cloud、MyBatis、Restful API、分布式系统、消息队列、Docker、Kubernetes、微服务架构监控和 ELK 栈等内容。通过阅读本专栏,读者可以快速掌握 Java 面试中的常见考点,为求职面试做好充分准备。
最低0.47元/天 解锁专栏
买1年送3月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )

最新推荐

LM324运放芯片揭秘

# 摘要 LM324运放芯片是一款广泛应用于模拟电路设计的四运算放大器集成电路,以其高性能、低成本和易用性受到电路设计师的青睐。本文首先对LM324的基本工作原理进行了深入介绍,包括其内部结构、电源供电需求、以及信号放大特性。随后,详细阐述了LM324在实际应用中的电路设计,包括构建基本的放大器电路和电压比较器电路,以及在滤波器设计中的应用。为了提高设计的可靠性,本文还提供了选型指南和故障排查方法。最后,通过实验项目和案例分析,展示了LM324的实际应用,并对未来发展趋势进行了展望,重点讨论了其在现代电子技术中的融合和市场趋势。 # 关键字 LM324运放芯片;内部结构;电源供电;信号放大;

提升RFID效率:EPC C1G2协议优化技巧大公开

# 摘要 本文全面概述了EPC C1G2协议的重要性和技术基础,分析了其核心机制、性能优化策略以及在不同行业中的应用案例。通过深入探讨RFID技术与EPC C1G2的关系,本文揭示了频率与信号调制方式、数据编码与传输机制以及标签与读取器通信协议的重要性。此外,文章提出了提高读取效率、优化数据处理流程和系统集成的策略。案例分析展示了EPC C1G2协议在制造业、零售业和物流行业中的实际应用和带来的效益。最后,本文展望了EPC C1G2协议的未来发展方向,包括技术创新、标准化进程、面临挑战以及推动RFID技术持续进步的策略。 # 关键字 EPC C1G2协议;RFID技术;性能优化;行业应用;技

【鼎捷ERP T100数据迁移专家指南】:无痛切换新系统的8个步骤

![【鼎捷ERP T100数据迁移专家指南】:无痛切换新系统的8个步骤](https://www.cybrosys.com/blog/Uploads/BlogImage/how-to-import-various-aspects-of-data-in-odoo-13-1.png) # 摘要 本文详细介绍了ERP T100数据迁移的全过程,包括前期准备工作、实施计划、操作执行、系统验证和经验总结优化。在前期准备阶段,重点分析了数据迁移的需求和环境配置,并制定了相应的数据备份和清洗策略。在实施计划中,本文提出了迁移时间表、数据迁移流程和人员角色分配,确保迁移的顺利进行。数据迁移操作执行部分详细阐

【Ansys压电分析最佳实践】:专家分享如何设置参数与仿真流程

![【Ansys压电分析最佳实践】:专家分享如何设置参数与仿真流程](https://images.squarespace-cdn.com/content/v1/56a437f8e0327cd3ef5e7ed8/1604510002684-AV2TEYVAWF5CVNXO6P8B/Meshing_WS2.png) # 摘要 本文系统地探讨了压电分析的基本理论及其在不同领域的应用。首先介绍了压电效应和相关分析方法的基础知识,然后对Ansys压电分析软件及其在压电领域的应用优势进行了详细的介绍。接着,文章深入讲解了如何在Ansys软件中设置压电分析参数,包括材料属性、边界条件、网格划分以及仿真流

【提升活化能求解精确度】:热分析实验中的变量控制技巧

# 摘要 热分析实验是研究材料性质变化的重要手段,而活化能概念是理解化学反应速率与温度关系的基础。本文详细探讨了热分析实验的基础知识,包括实验变量控制的理论基础、实验设备的选择与使用,以及如何提升实验数据精确度。文章重点介绍了活化能的计算方法,包括常见模型及应用,及如何通过实验操作提升求解技巧。通过案例分析,本文展现了理论与实践相结合的实验操作流程,以及高级数据分析技术在活化能测定中的应用。本文旨在为热分析实验和活化能计算提供全面的指导,并展望未来的技术发展趋势。 # 关键字 热分析实验;活化能;实验变量控制;数据精确度;活化能计算模型;标准化流程 参考资源链接:[热分析方法与活化能计算:

STM32F334开发速成:5小时搭建专业开发环境

![STM32F334开发速成:5小时搭建专业开发环境](https://predictabledesigns.com/wp-content/uploads/2022/10/FeaturedImage-1030x567.jpg) # 摘要 本文是一份关于STM32F334微控制器开发速成的全面指南,旨在为开发者提供从基础设置到专业实践的详细步骤和理论知识。首先介绍了开发环境的基础设置,包括开发工具的选择与安装,开发板的设置和测试,以及环境的搭建。接着,通过理论知识和编程基础的讲解,帮助读者掌握STM32F334微控制器的核心架构、内存映射以及编程语言应用。第四章深入介绍了在专业开发环境下的高

【自动控制原理的现代解读】:从经典课件到现代应用的演变

![【自动控制原理的现代解读】:从经典课件到现代应用的演变](https://swarma.org/wp-content/uploads/2024/04/wxsync-2024-04-b158535710c1efc86ee8952b65301f1e.jpeg) # 摘要 自动控制原理是工程领域中不可或缺的基础理论,涉及从经典控制理论到现代控制理论的广泛主题。本文首先概述了自动控制的基本概念,随后深入探讨了经典控制理论的数学基础,包括控制系统模型、稳定性的数学定义、以及控制理论中的关键概念。第三章侧重于自动控制系统的设计与实现,强调了系统建模、控制策略设计,以及系统实现与验证的重要性。第四章则

自动化测试:提升收音机测试效率的工具与流程

![自动化测试:提升收音机测试效率的工具与流程](https://i0.wp.com/micomlabs.com/wp-content/uploads/2022/01/spectrum-analyzer.png?fit=1024%2C576&ssl=1) # 摘要 随着软件测试行业的发展,自动化测试已成为提升效率、保证产品质量的重要手段。本文全面探讨了自动化测试的理论基础、工具选择、流程构建、脚本开发以及其在特定场景下的应用。首先,我们分析了自动化测试的重要性和理论基础,接着阐述了不同自动化测试工具的选择与应用场景,深入讨论了测试流程的构建、优化和管理。文章还详细介绍了自动化测试脚本的开发与