YOLOv5模型ONNX部署实战:OpenCV实现目标检测(附案例代码)

发布时间: 2024-08-10 17:37:13 阅读量: 136 订阅数: 46
ZIP

yolov5训练以及模型onnx转换

![YOLOv5模型ONNX部署实战:OpenCV实现目标检测(附案例代码)](https://ucc.alicdn.com/images/user-upload-01/img_convert/01965b3fdded9f2a61ba29a6b67f442f.png?x-oss-process=image/resize,s_500,m_lfit) # 1. YOLOv5模型概述** YOLOv5是目前最先进的实时目标检测模型之一,它以其出色的速度和精度而闻名。YOLOv5采用单阶段目标检测架构,将目标检测任务分解为一个单一的回归问题,预测每个网格单元中的边界框和类别概率。 与之前的YOLO版本相比,YOLOv5引入了许多改进,包括: * **Cross-Stage Partial Connections (CSP)**:一种新的卷积层结构,可以减少计算量并提高准确性。 * **Spatial Attention Module (SAM)**:一种注意力机制,可以提高模型对不同尺度目标的检测能力。 * **Path Aggregation Network (PAN)**:一种特征融合网络,可以改善不同尺度特征之间的信息流。 # 2. ONNX模型转换与部署 ### 2.1 ONNX模型转换 **概述** ONNX(Open Neural Network Exchange)是一种开放且可移植的模型格式,用于表示神经网络模型。它允许在不同的框架和平台之间轻松转换和部署模型。 **转换过程** 将 YOLOv5 模型转换为 ONNX 格式需要以下步骤: 1. 安装 ONNX 转换器:`pip install onnx` 2. 导入 YOLOv5 模型:`import onnxruntime` 3. 创建 ONNX 模型:`model = onnx.load_model("yolov5.onnx")` **代码块:** ```python import onnx # 加载 YOLOv5 模型 model = onnx.load_model("yolov5.onnx") ``` **逻辑分析:** * `onnx.load_model()` 函数加载指定的 ONNX 模型文件,并返回一个 `onnx.ModelProto` 对象。 ### 2.2 OpenCV模型部署 **概述** OpenCV 是一个计算机视觉库,提供用于图像处理、目标检测和机器学习的函数。它支持 ONNX 模型的部署和推理。 **部署过程** 使用 OpenCV 部署 ONNX 模型涉及以下步骤: 1. 安装 OpenCV:`pip install opencv-python` 2. 导入 OpenCV:`import cv2` 3. 加载 ONNX 模型:`net = cv2.dnn.readNetFromONNX("yolov5.onnx")` 4. 图像预处理:将图像转换为 OpenCV 格式 5. 模型推理:`blob = cv2.dnn.blobFromImage(image, 1/255.0, (416, 416), (0, 0, 0), swapRB=True, crop=False)` 6. 后处理:解析推理结果 **代码块:** ```python import cv2 # 加载 ONNX 模型 net = cv2.dnn.readNetFromONNX("yolov5.onnx") # 图像预处理 image = cv2.imread("image.jpg") blob = cv2.dnn.blobFromImage(image, 1/255.0, (416, 416), (0, 0, 0), swapRB=True, crop=False) # 模型推理 net.setInput(blob) detections = net.forward() ``` **逻辑分析:** * `cv2.dnn.readNetFromONNX()` 函数加载指定的 ONNX 模型文件,并返回一个 OpenCV `Net` 对象。 * `cv2.dnn.blobFromImage()` 函数将图像转换为 OpenCV 的 blob 格式,用于模型推理。 * `net.setInput()` 函数将 blob 设置为模型的输入。 * `net.forward()` 函数执行模型推理,并返回检测结果。 # 3.1 图像预处理 图像预处理是目标检测中至关重要的一步,它可以有效地提高模型的检测精度和推理速度。YOLOv5模型对输入图像的尺寸和格式有特定的要求,因此需要对原始图像进行预处理。 #### 图像尺寸调整 YOLOv5模型要求输入图像的尺寸为`640x640`,如果原始图像尺寸不符合该要求,需要进行尺寸调整。常用的图像尺寸调整方法有: - **缩放:**将图像等比例缩放至指定尺寸。 - **填充:**在图像周围填充像素以达到指定尺寸。 - **裁剪:**从图像中裁剪出指定尺寸的区域。 #### 图像格式转换 YOLOv5模型要求输入图像为`RGB`格式,如果原始图像为其他格式,需要进行格式转换。常用的图像格式转换方法有: - **BGR转RGB:**将图像的通道顺序从`BGR`转换为`RGB`。 - **灰度转RGB:**将灰度图像转换为`RGB`图像。 #### 图像归一化 图像归一化可以将图像像素值归一化到一个特定的范围内,通常是`[0, 1]`或`[-1, 1]`
corwn 最低0.47元/天 解锁专栏
买1年送3月
点击查看下一篇
profit 百万级 高质量VIP文章无限畅学
profit 千万级 优质资源任意下载
profit C知道 免费提问 ( 生成式Al产品 )

相关推荐

张_伟_杰

人工智能专家
人工智能和大数据领域有超过10年的工作经验,拥有深厚的技术功底,曾先后就职于多家知名科技公司。职业生涯中,曾担任人工智能工程师和数据科学家,负责开发和优化各种人工智能和大数据应用。在人工智能算法和技术,包括机器学习、深度学习、自然语言处理等领域有一定的研究
专栏简介
本专栏深入探讨了使用 OpenCV 调用 YOLOv5 模型 ONNX 的各个方面。从环境搭建到实战部署,它提供了全面的指南,涵盖了优化技巧、性能提升、常见问题和解决方案。专栏还提供了附有案例代码和性能优化技巧的实战案例,展示了 YOLOv5 模型 ONNX 与 OpenCV 的强大组合在图像目标检测中的应用。此外,它还介绍了部署策略,帮助读者优化模型性能并将其部署到实际应用中。通过本专栏,读者可以掌握使用 OpenCV 调用 YOLOv5 模型 ONNX 进行目标检测的方方面面,并获得提高模型性能和部署效率的实用技巧。
最低0.47元/天 解锁专栏
买1年送3月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )

最新推荐

【OBDD技术深度剖析】:硬件验证与软件优化的秘密武器

![有序二叉决策图OBDD-有序二叉决策图(OBDD)及其应用](https://img-blog.csdnimg.cn/img_convert/fb1816428d5883f41b9ca59df07caece.png) # 摘要 有序二元决策图(OBDD)是一种广泛应用于硬件验证、软件优化和自动化测试的高效数据结构。本文首先对OBDD技术进行了概述,并深入探讨了其理论基础,包括基本概念、数学模型、结构分析和算法复杂性。随后,本文重点讨论了OBDD在硬件验证与软件优化领域的具体应用,如规范表示、功能覆盖率计算、故障模拟、逻辑分析转换、程序验证和测试用例生成。最后,文章分析了OBDD算法在现代

【微服务架构的挑战与对策】:从理论到实践

![【微服务架构的挑战与对策】:从理论到实践](https://cdn.confluent.io/wp-content/uploads/event-driven-organization.png) # 摘要 微服务架构作为一种现代化的软件架构方式,通过服务的划分和分布式部署,提高了应用的灵活性和可扩展性。本文从基本概念和原则出发,详细探讨了微服务架构的技术栈和设计模式,包括服务注册与发现、负载均衡、通信机制以及设计模式。同时,文章深入分析了实践中的挑战,如数据一致性、服务治理、安全问题等。在优化策略方面,本文讨论了性能、可靠性和成本控制的改进方法。最后,文章展望了微服务架构的未来趋势,包括服

RadiAnt DICOM Viewer错误不再难:专家解析常见问题与终极解决方案

![RadiAnt DICOM Viewer 4.2.1版使用手册](http://www.yishimei.cn/upload/2022/2/202202100032380377.png) # 摘要 本文对RadiAnt DICOM Viewer这款专业医学影像软件进行了全面的介绍与分析。首先概述了软件的基本功能和常见使用问题,接着深入探讨了软件的错误分析和解决策略,包括错误日志的分析方法、常见错误原因以及理论上的解决方案。第四章提供了具体的终极解决方案实践,包括常规问题和高级问题的解决步骤、预防措施与最佳实践。最后,文章展望了软件未来的优化建议和用户交互提升策略,并预测了技术革新和行业应

macOS用户必看:JDK 11安装与配置的终极指南

![macOS用户必看:JDK 11安装与配置的终极指南](https://img-blog.csdnimg.cn/direct/f10ef4471cf34e3cb1168de11eb3838a.png) # 摘要 本文全面介绍了JDK 11的安装、配置、高级特性和性能调优。首先概述了JDK 11的必要性及其新特性,强调了其在跨平台安装和环境变量配置方面的重要性。随后,文章深入探讨了配置IDE和使用JShell进行交互式编程的实践技巧,以及利用Maven和Gradle构建Java项目的具体方法。在高级特性部分,本文详细介绍了新HTTP Client API的使用、新一代垃圾收集器的应用,以及

华为产品开发流程揭秘:如何像华为一样质量与效率兼得

![华为产品开发流程揭秘:如何像华为一样质量与效率兼得](https://static.mianbaoban-assets.eet-china.com/xinyu-images/MBXY-CR-20f54804e585c13cea45b495ed08831f.png) # 摘要 本文详细探讨了华为公司产品开发流程的理论与实践,包括产品生命周期管理理论、集成产品开发(IPD)理论及高效研发组织结构理论的应用。通过对华为市场需求分析、产品规划、项目管理、团队协作以及质量控制和效率优化等关键环节的深入分析,揭示了华为如何通过其独特的开发流程实现产品创新和市场竞争力的提升。本文还着重评估了华为产品的

无线通信深度指南:从入门到精通,揭秘信号衰落与频谱效率提升(权威实战解析)

![无线通信深度指南:从入门到精通,揭秘信号衰落与频谱效率提升(权威实战解析)](https://community.appinventor.mit.edu/uploads/default/original/3X/9/3/9335bbb3bc251b1365fc16e6c0007f1daa64088a.png) # 摘要 本文深入探讨了无线通信中的频谱效率和信号衰落问题,从基础理论到实用技术进行了全面分析。第一章介绍了无线通信基础及信号衰落现象,阐述了无线信号的传播机制及其对通信质量的影响。第二章聚焦于频谱效率提升的理论基础,探讨了提高频谱效率的策略与方法。第三章则详细讨论了信号调制与解调技

【HOMER最佳实践分享】:行业领袖经验谈,提升设计项目的成功率

![HOMER软件说明书中文版](https://www.mandarin-names.com/img/names/homer.jpg) # 摘要 本文全面介绍了HOMER项目管理的核心概念、理论基础、实践原则、设计规划技巧、执行监控方法以及项目收尾与评估流程。首先概述了HOMER项目的管理概述,并详细阐释了其理论基础,包括生命周期模型和框架核心理念。实践原则部分强调了明确目标、资源优化和沟通的重要性。设计与规划技巧章节则深入探讨了需求分析、设计方案的迭代、风险评估与应对策略。执行与监控部分着重于执行计划、团队协作、进度跟踪、成本控制和问题解决。最后,在项目收尾与评估章节中,本文涵盖了交付流

【SCSI Primary Commands的终极指南】:SPC-5基础与核心概念深度解析

![【SCSI Primary Commands的终极指南】:SPC-5基础与核心概念深度解析](https://www.t10.org/scsi-3.jpg) # 摘要 本文系统地探讨了SCSI协议与SPC标准的发展历程、核心概念、架构解析以及在现代IT环境中的应用。文章详细阐述了SPC-5的基本概念、命令模型和传输协议,并分析了不同存储设备的特性、LUN和目标管理,以及数据保护与恢复的策略。此外,本文还讨论了SPC-5在虚拟化环境、云存储中的实施及其监控与诊断工具,展望了SPC-5的技术趋势、标准化扩展和安全性挑战,为存储协议的发展和应用提供了深入的见解。 # 关键字 SCSI协议;S

【工业自动化新星】:CanFestival3在自动化领域的革命性应用

![【工业自动化新星】:CanFestival3在自动化领域的革命性应用](https://www.pantechsolutions.net/wp-content/uploads/2021/09/caninterface02.jpg) # 摘要 CanFestival3作为一款流行的开源CANopen协议栈,在工业自动化领域扮演着关键角色。本文首先概述了CanFestival3及其在工业自动化中的重要性,随后深入分析其核心原理与架构,包括协议栈基础、配置与初始化以及通信机制。文章详细介绍了CanFestival3在不同工业应用场景中的实践应用案例,如制造业和智慧城市,强调了其对机器人控制系统

【海康威视VisionMaster SDK秘籍】:构建智能视频分析系统的10大实践指南

![【海康威视VisionMaster SDK秘籍】:构建智能视频分析系统的10大实践指南](https://safenow.org/wp-content/uploads/2021/08/Hikvision-Camera.png) # 摘要 本文详细介绍了海康威视VisionMaster SDK的核心概念、基础理论以及实际操作指南,旨在为开发者提供全面的技术支持和应用指导。文章首先概述了智能视频分析系统的基础理论和SDK架构,紧接着深入探讨了实际操作过程中的环境搭建、核心功能编程实践和系统调试。此外,本文还分享了智能视频分析系统的高级应用技巧,如多通道视频同步分析、异常行为智能监测和数据融合
最低0.47元/天 解锁专栏
买1年送3月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )