Scala与Spark实现的DBSCAN分布式集群算法

需积分: 38 9 下载量 115 浏览量 更新于2024-12-22 1 收藏 2.43MB ZIP 举报
资源摘要信息:"DBSCAN-distributed是一个使用Scala和Apache Spark实现的DBSCAN(Density-Based Spatial Clustering of Applications with Noise)集群算法的项目。DBSCAN是一种基于密度的空间聚类算法,用于在带噪声的空间数据库中发现任意形状的簇。它通过标识那些在高密度区域中的点并将其聚类,同时将那些位于低密度区域的点识别为噪声来工作。DBSCAN算法在很多领域都得到了广泛应用,例如遥感、地理信息系统、机器学习和数据挖掘等。 DBSCAN-distributed项目基于Scala语言开发,并且利用了Apache Spark的大数据处理能力,使得DBSCAN算法能够处理大规模的数据集,并在分布式环境中高效运行。Scala是一种多范式编程语言,其设计初衷是结合面向对象编程和函数式编程的特性。Apache Spark是一个开源的分布式计算系统,提供了高性能和低延迟的数据处理能力,特别适合于需要快速迭代的大数据处理任务。 使用该项目之前,首先需要在本地环境中克隆存储库,通过Git版本控制系统完成。可以使用git clone命令从项目的GitHub仓库地址克隆代码到本地。接下来,用户需要使用sbt(Simple Build Tool)这个Scala的包管理工具来构建项目。sbt类似于Java中的MAVEN,提供了构建和依赖管理的功能。在构建之前,用户需要确保本地环境已经安装了openjdk,因为sbt需要Java运行环境。MACOS用户可以通过brew安装openjdk,而UBUNTU用户则需要通过apt-get安装。 此外,该项目还提供了在EMR(Elastic MapReduce)集群上远程执行jar文件的能力。EMR是Amazon推出的一个托管Hadoop服务,它简化了在云环境中部署和管理Hadoop集群的过程。通过该项目构建的jar文件可以在EMR集群上部署,进一步提升了处理大规模数据集的能力。 在实现DBSCAN算法时,项目可能涉及以下几个重要的Scala编程知识点: - 高阶函数:Scala允许将函数作为一等公民,可以将函数作为参数或返回值。 - 集合操作:Scala集合库提供了丰富的集合操作,对于数据处理尤为重要。 - 并行集合:使用Scala的集合库中的并行集合可以简化并行数据处理。 - Spark RDD操作:了解如何使用Apache Spark的弹性分布式数据集(RDD)进行数据处理。 对于Apache Spark相关知识点,可能包括: - Spark Core:Spark的基础,提供了内存计算的抽象。 - Spark SQL:用于处理结构化数据的模块。 - Spark MLlib:机器学习库,其中可能包括DBSCAN算法的实现。 - Spark Streaming:用于处理实时数据流的模块。 DBSCAN-distributed项目的发布,为需要在大数据环境下使用DBSCAN算法的开发者提供了一个实用的解决方案,尤其是那些希望利用Scala和Spark强大的分布式处理能力进行数据挖掘和机器学习的开发者。"
2018-06-21 上传
利用scala实现的k-means 包含数据集 0 1 22 9 181 5450 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 8 8 0.00 0.00 0.00 0.00 1.00 0.00 0.00 9 9 1.00 0.00 0.11 0.00 0.00 0.00 0.00 0.00 0 1 22 9 239 486 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 8 8 0.00 0.00 0.00 0.00 1.00 0.00 0.00 19 19 1.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0 1 22 9 235 1337 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 8 8 0.00 0.00 0.00 0.00 1.00 0.00 0.00 29 29 1.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0 1 22 9 219 1337 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 6 6 0.00 0.00 0.00 0.00 1.00 0.00 0.00 39 39 1.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0 1 22 9 217 2032 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 6 6 0.00 0.00 0.00 0.00 1.00 0.00 0.00 49 49 1.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0 1 22 9 217 2032 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 6 6 0.00 0.00 0.00 0.00 1.00 0.00 0.00 59 59 1.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0 1 22 9 212 1940 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 2 0.00 0.00 0.00 0.00 1.00 0.00 1.00 1 69 1.00 0.00 1.00 0.04 0.00 0.00 0.00 0.00 0 1 22 9 159 4087 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 5 5 0.00 0.00 0.00 0.00 1.00 0.00 0.00 11 79 1.00 0.00 0.09 0.04 0.00 0.00 0.00 0.00 0 1 22 9 210 151 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 8 8 0.00 0.00 0.00 0.00 1.00 0.00 0.00 8 89 1.00 0.00 0.12 0.04 0.00 0.00 0.00 0.00 0 1 22 9 212 786 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 8 8 0.00 0.00 0.00 0.00 1.00 0.00 0.00 8 99 1.00 0.00 0.12 0.05 0.00 0.00 0.00 0.00 0 1 22 9 210 624 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 18 18 0.00 0.00 0.00 0.00 1.00 0.00 0.00 18 109 1.00 0.00 0.06 0.05 0.00 0.00 0.00 0.00 0 1 22 9 177 1985 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0.00 0.00 0.00 0.00 1.00 0.00 0.00 28 119 1.00 0.00 0.04 0.04 0.00 0.00 0.00 0.00 0 1 22 9 222 773 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 11 11 0.00 0.00 0.00 0.00 1.00 0.00 0.00 38 129 1.00 0.00 0.03 0.04 0.00 0.00 0.00 0.00 0 1 22 9 256 1169 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 4 4 0.00 0.00 0.00 0.00 1.00 0.00 0.00 4 139 1.00 0.00 0.25 0.04 0.00 0.00 0.00 0.00 0 1 22 9 241 259 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0.00 0.00 0.00 0.00 1.00 0.00 0.00 14 149 1.00 0.00 0.07 0.04 0.00 0.00 0.00 0.00 0 1 22 9 260 1837 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 11 11 0.00 0.00 0.00 0.00 1.00 0.00 0.00 24 159 1.00 0.00 0.04 0.04 0.00 0.00 0.00 0.00 0 1 22 9 241 261 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 2 0.00 0.00 0.00 0.00 1.00 0.00 0.00 34 169 1.00 0.00 0.03 0.04 0.00 0.00 0.00 0.00 0 1 22 9 257 818 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 12 12 0.00 0.00 0.00 0.00 1.00 0.00 0.00 44 179 1.00 0.00 0.02 0.03 0.00 0.00 0.00 0.00 0 1 22 9 233 255 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 8 0.00 0.00 0.00 0.00 1.00 0.00 0.25 54 189 1.00 0.00 0.02 0.03 0.00 0.00 0.00 0.00 0 1 22 9 233 504 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 7 7 0.00 0.00 0.00 0.00 1.00 0.00 0.00 64 199 1.00 0.00 0.02 0.03 0.00 0.00 0.00 0.00 0 1 22 9 256 1273 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 17 17 0.00 0.00 0.00 0.00 1.00 0.00 0.00 74 209 1.00 0.00 0.01 0.03 0.00 0.00 0.00 0.00 0 1 22 9 234 255 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 5 5 0.00 0.00 0.00 0.00 1.00 0.00 0.00 84 219 1.00 0.00 0.01 0.03 0.00 0.00 0.00 0.00 0 1 22 9 241 259 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 12 12 0.00 0.00 0.00 0.00 1.00 0.00 0.00 94 229 1.00 0.00 0.01 0.03 0.00 0.00 0.00 0.00 0 1 22 9 239 968 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 3 3 0.00 0.00 0.00 0.00 1.00 0.00 0.00 3 239 1.00 0.00 0.33 0.03 0.00 0.00 0.00 0.00 0 1 22 9 245 1919 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 13 13 0.00 0.00 0.00 0.00 1.00 0.00 0.00 13 249 1.00 0.00 0.08 0.03 0.00 0.00 0.00 0.00 0 1 22 9 248 2129 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 23 23 0.00 0.00 0.00 0.00 1.00 0.00 0.00 23 255 1.00 0.00 0.04 0.03 0.00 0.00 0.00 0.00 0 1 22 9 354 1752 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 2 0.00 0.00 0.00 0.00 1.00 0.00 0.00 5 255 1.00 0.00 0.20 0.04 0.00 0.00 0.00 0.00 0 1 22 9 193 3991 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0.00 0.00 0.00 0.00 1.00 0.00 0.00 1 255 1.00 0.00 1.00 0.05 0.00 0.00 0.00 0.00 0 1 22 9 214 14959 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 6 6 0.00 0.00 0.00 0.00 1.00 0.00 0.00 11 255 1.00 0.00 0.09 0.05 0.00 0.00 0.00 0.00 0 1 22 9 212 1309 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 10 0.00 0.00 0.00 0.00 1.00 0.00 0.20 21 255 1.00 0.00 0.05 0.05 0.00 0.00 0.00 0.00 0 1 22 9 215 3670 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 3 3 0.00 0.00 0.00 0.00 1.00 0.00 0.00 31 255 1.00 0.00 0.03 0.05 0.00 0.00 0.00 0.00 0 1 22 9 217 18434 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 2 0.00 0.00 0.00 0.00 1.00 0.00 0.00 41 255 1.00 0.00 0.02 0.05 0.00 0.00 0.00 0.00 0 1 22 9 205 424 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 25 0.00 0.00 0.00 0.00 1.00 0.00 0.12 2 255 1.00 0.00 0.50 0.05 0.00 0.00 0.00 0.00 0 1 22 9 155 424 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 3 13 0.00 0.00 0.00 0.00 1.00 0.00 0.15 12 255 1.00 0.00 0.08 0.05 0.00 0.00 0.00 0.00 0 1 22 9 202 424 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 3 3 0.00 0.00 0.00 0.00 1.00 0.00 0.00 22 255 1.00 0.00 0.05 0.05 0.00 0.00 0.00 0.00 0 1 22 9 235 6627 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0.00 0.00 0.00 0.00 1.00 0.00 0.00 32 255 1.00 0.00 0.03 0.05 0.00 0.00 0.00 0.00 0 1 22 9 259 3917 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0.00 0.00 0.00 0.00 1.00 0.00 0.00 42 255 1.00 0.00 0.02 0.05 0.00 0.00 0.00 0.00 0 1 22 9 301 2653 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 2 0.00 0.00 0.00 0.00 1.00 0.00 0.00 52 255 1.00 0.00 0.02 0.05 0.00 0.00 0.00 0.00 0 1 22 9 322 424 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 2 0.00 0.00 0.00 0.00 1.00 0.00 0.00 62 255 1.00 0.00 0.02 0.05 0.00 0.00 0.00 0.00 0 1 22 9 370 520 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 3 3 0.00 0.00 0.00 0.00 1.00 0.00 0.00 72 255 1.00 0.00 0.01 0.04 0.00 0.00 0.00 0.00 0 1 22 9 370 520 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 3 3 0.00 0.00 0.00 0.00 1.00 0.00 0.00 82 255 1.00 0.00 0.01 0.04 0.00 0.00 0.00 0.00 0 1 22 9 172 5884 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 6 6 0.00 0.00 0.00 0.00 1.00 0.00 0.00 10 255 1.00 0.00 0.10 0.05 0.00 0.00 0.00 0.00 0 1 22 9 264 16123 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 13 0.00 0.00 0.00 0.00 1.00 0.00 0.23 20 255 1.00 0.00 0.05 0.05 0.00 0.00 0.00 0.00 0 1 22 9 255 1948 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 4 14 0.00 0.00 0.00 0.00 1.00 0.00 0.14 30 255 1.00 0.00 0.03 0.05 0.00 0.00 0.00 0.00 0 1 22 9 274 19790 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 6 6 0.00 0.00 0.00 0.00 1.00 0.00 0.00 40 255 1.00 0.00 0.03 0.05 0.00 0.00 0.00 0.00 0 1 22 9 313 293 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 3 3 0.00 0.00 0.00 0.00 1.00 0.00 0.00 3 255 1.00 0.00 0.33 0.05 0.00 0.00 0.00 0.00 0 1 22 9 145 4466 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 4 4 0.00 0.00 0.00 0.00 1.00 0.00 0.00 13 255 1.00 0.00 0.08 0.05 0.00 0.00 0.00 0.00 0 1 22 9 290 460 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0.00 0.00 0.00 0.00 1.00 0.00 0.00 23 255 1.00 0.00 0.04 0.05 0.00 0.00 0.00 0.00 0 1 22 9 309 17798 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 2 0.00 0.00 0.00 0.00 1.00 0.00 0.00 2 255 1.00 0.00 0.50 0.06 0.00 0.00 0.00 0.00 0 1 22 9 317 2075 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 4 4 0.00 0.00 0.00 0.00 1.00 0.00 0.00 8 255 1.00 0.00 0.12 0.06 0.00 0.00 0.00 0.00