静态区间神经网络全局指数鲁棒稳定性分析

0 下载量 194 浏览量 更新于2024-08-28 收藏 162KB PDF 举报
"Global exponential robust stability of static interval neural networks with S-type distributed delays" 这篇论文主要探讨了具有S型分布延迟的静态区间神经网络的全局指数鲁棒稳定性问题。在神经网络领域,稳定性是至关重要的,因为它关系到网络能否稳定运行并进行有效学习。作者在参考文献[7]的基础上进行了进一步的研究,利用了Razumikhin定理获得了静态区间神经网络的全局渐近稳定性。然而,本篇论文的目标是通过Lyapunov函数方法来研究全局指数鲁棒稳定性,并且优化了证明方法,使得论证更为简洁。 Lyapunov函数方法是一种常用于分析动态系统稳定性的重要工具,它基于构造一个与系统状态相关的函数,通过这个函数的性质来证明系统的稳定性。在这个过程中,通常需要考虑函数的单调性、有界性和可微性等条件。然而,本论文的贡献在于,它提出了一条定理和一个推论,这些结果表明,在不依赖于激活函数的有界性、单调性和可微性条件下,也能确保全局指数鲁棒稳定性。这一突破性进展意味着,对于具有不同特性的激活函数,理论适用性更广,对实际应用中的神经网络模型提供了更广泛的支持。 激活函数在神经网络中起到关键作用,它们决定了神经元的输出如何随着输入变化。传统的分析往往假设激活函数满足特定的数学条件,如连续、有界、单调等。而本论文的结果放宽了这些假设,这在理论上为设计和分析更复杂的神经网络模型提供了更大的灵活性。此外,对于实际应用中可能遇到的各种不确定性,例如参数的波动或延迟的存在,全局指数鲁棒稳定性保证了网络性能的稳定性。 论文中,作者们进行了详细的数学推导和证明,以展示其提出的定理和推论的有效性。通过具体的例子和数值模拟,他们进一步验证了理论结果的正确性和实用性。这一工作不仅深化了我们对静态区间神经网络稳定性的理解,而且对于神经网络的设计、优化和应用,特别是在处理具有分布延迟的实际问题时,提供了重要的理论指导。 这篇论文在神经网络稳定性理论方面取得了显著的进步,通过创新的分析方法和减弱的假设条件,扩展了已有的研究成果,对于未来的研究者和工程师来说,这将是一个有价值的参考。

Make sure that we grade your HW based solely on your R code script. If we don’t see the correct results when we run your code, you will get 0 point for those questions. 1. Create a R function to show the central limit theorem. This function should have the following properties: - In the argument of the function, you have an option to consider poisson, exponential, uniform, normal distributions as the population distribution. - Depending on the choice of the population distribution in part (1), the function will receive extra argument(s) for the parameters of the distribution. For example, if a normal distri- bution is chosen, the mean and SD are needed in the function argument. Note that each distribution has a different parameter setting. - If the distribution is not selected from (“Normal”, “Poisson”, “Uniform”, “Exponential”), the function needs to print the following error message: check the distributional setting: consider ("Normal", "Poisson", "Uniform", "Exponential") and stop. - The function should give the summary statistics (minimum, 1st quartile, median, mean, 3rd quartile, maximum) of 1, 000 sample mean values for given n values (n = 10, 50, 100, 500). - The result should have the following statement at the beginning, for example, if a normal distribution with mean 1 and SD 0.5 was chosen: ‘‘For the Normal distribution, the central limit theorem is tested’’ where the term “Normal” is automatically inserted in the statement based on the argument. And the output should have the following form: For the Normal distribution, the central limit theorem is tested When n=10: Min. 1st Qu. Median Mean 3rd Qu. Max. 0.5187 0.8930 1.0016 0.9993 1.1019 1.4532 When n=50: Min. 1st Qu. Median Mean 3rd Qu. Max. 0.7964 0.9508 1.0010 0.9997 1.0493 1.2309 1 When n=100: Min. 1st Qu. Median Mean 3rd Qu. Max. 0.8534 0.9679 0.9972 0.9992 1.0325 1.1711 When n=500: Min. 1st Qu. Median Mean 3rd Qu. Max. 0.9258 0.9836 1.0006 0.9997 1.0154 1.0678 I Using your own function, test the N(−1,0.52) and the Unif(−3,6) case.

2023-06-05 上传