粗糙集启发式人工选择算法加速遗传算法
需积分: 9 167 浏览量
更新于2024-08-13
收藏 229KB PDF 举报
本文主要探讨了一种创新的遗传算法改进策略,即"一种基于Rough集的启发式人工选择算法"。该算法起源于2007年的太原理工大学学报,发表在第38卷第1期,由陈泽华和谢克明两位作者提出。他们针对传统的二进制编码遗传算法(GA)进行扩展,引入粗糙集理论来增强算法性能。
粗糙集是一种数据挖掘工具,它通过对数据进行降维和简化处理,提取隐藏在大量历史数据中的关键信息,如重要基因位。在这个过程中,粗糙集能够识别出那些在优化问题中起决定性作用的特征,这些特征被称为"启发式信息"。作者利用这些信息,设计了一种人工选择算子,即在每个进化步骤中,根据粗糙集分析的结果,有针对性地选择表现优秀的个体进行人工育种,从而加速进化过程,提高算法的收敛效率。
研究者对典型测试函数进行了实验验证,结果显示,基于粗糙集的启发式人工选择算法显著提升了遗传算法的进化速度,减少了搜索空间,使得算法能够在更短的时间内找到更优解。这表明,粗糙集技术的有效应用不仅有助于优化问题的解决,而且在一定程度上提高了算法的实用性,对于复杂优化问题的求解具有实际意义。
本文的关键概念包括模式、阶、基因位置、定义等位基因和模式长度,这些都是粗糙集理论中的基础概念,它们在算法设计中起到指导作用。此外,文中还提到了国家自然科学基金项目的资助,这表明该研究得到了科研资金的支持,进一步证实了其学术价值和研究价值。
这项工作不仅丰富了遗传算法的策略,也为数据驱动的优化方法提供了新的思路,对于人工智能和优化领域的研究者来说,具有重要的参考价值。
2021-05-13 上传
2021-05-18 上传
2021-04-28 上传
2021-04-26 上传
2021-12-31 上传
2021-05-19 上传
2021-05-31 上传
2022-06-30 上传
2010-01-05 上传
weixin_38606202
- 粉丝: 1
- 资源: 951
最新资源
- WordPress作为新闻管理面板的实现指南
- NPC_Generator:使用Ruby打造的游戏角色生成器
- MATLAB实现变邻域搜索算法源码解析
- 探索C++并行编程:使用INTEL TBB的项目实践
- 玫枫跟打器:网页版五笔打字工具,提升macOS打字效率
- 萨尔塔·阿萨尔·希塔斯:SATINDER项目解析
- 掌握变邻域搜索算法:MATLAB代码实践
- saaraansh: 简化法律文档,打破语言障碍的智能应用
- 探索牛角交友盲盒系统:PHP开源交友平台的新选择
- 探索Nullfactory-SSRSExtensions: 强化SQL Server报告服务
- Lotide:一套JavaScript实用工具库的深度解析
- 利用Aurelia 2脚手架搭建新项目的快速指南
- 变邻域搜索算法Matlab实现教程
- 实战指南:构建高效ES+Redis+MySQL架构解决方案
- GitHub Pages入门模板快速启动指南
- NeonClock遗产版:包名更迭与应用更新