超快速大数据算法:HyperLearn在PyTorch中的应用与优势
需积分: 9 50 浏览量
更新于2024-07-17
收藏 2.45MB PDF 举报
现代大数据算法(Modern Big Data Algorithms)是一本由Daniel Han-Chen编写的全面指南,专注于介绍适用于大数据时代的更快、更精确的机器学习技术。随着21世纪初期数据集的爆炸式增长,传统的低效算法已经无法满足处理海量数据的需求,这可能会导致效率低下、生产力下降以及经济损失。该书旨在帮助读者优化在股票市场预测、气候变化建模、人工智能和癌症研究等领域中的算法,从而推动全球受益于更为先进的数值方法。
《现代大数据算法》采用了Python库PyTorch和一些高性能工具,如NoGil Numba、NumPy、Pandas、SciPy以及LAPACK,这些库在处理大规模数据时提供了高效的支持。作者特别提到了HyperLearn,这是一个基于PyTorch构建的框架,它在语法上与Scikit-Learn类似,但还集成了统计推断功能,使得编程更加便捷。HyperLearn的大部分代码可以在GitHub仓库github.com/danielhanchen/hyperlearn中找到。
作者感谢Aleksandar Ignjatovic(UNSW)允许他将此内容用于COMP4121课程,这表明本书是教育和实践相结合的资源。书中不仅包含了算法的核心原理,而且还提供了详细的算法实现和图形展示,包括使用T-SNE(t-distributed stochastic neighbor embedding)技术的网络映射示例,展示了如何通过数据可视化来展现算法的工作原理。字体选择为Helvetica,确保了清晰易读,而图形设计则强调了算法展示的直观性。
《现代大数据算法》是一本实用且深入的教材,适合那些希望在大数据处理和机器学习领域提升技能的专业人士,特别是那些寻求在面临大规模数据挑战时能够有效解决问题的人。通过学习本书,读者不仅能掌握最新的技术,还能了解到如何将它们应用到实际问题中,提高计算效率和准确性。
2018-06-19 上传
Optimization of Medical Data Analysis with MATLAB: Practical Applications of Optimization Algorithms
点击了解资源详情
点击了解资源详情
点击了解资源详情
点击了解资源详情
点击了解资源详情
点击了解资源详情
2024-11-13 上传
2024-11-13 上传
FoJi_Chen
- 粉丝: 1
- 资源: 19
最新资源
- 黑板风格计算机毕业答辩PPT模板下载
- CodeSandbox实现ListView快速创建指南
- Node.js脚本实现WXR文件到Postgres数据库帖子导入
- 清新简约创意三角毕业论文答辩PPT模板
- DISCORD-JS-CRUD:提升 Discord 机器人开发体验
- Node.js v4.3.2版本Linux ARM64平台运行时环境发布
- SQLight:C++11编写的轻量级MySQL客户端
- 计算机专业毕业论文答辩PPT模板
- Wireshark网络抓包工具的使用与数据包解析
- Wild Match Map: JavaScript中实现通配符映射与事件绑定
- 毕业答辩利器:蝶恋花毕业设计PPT模板
- Node.js深度解析:高性能Web服务器与实时应用构建
- 掌握深度图技术:游戏开发中的绚丽应用案例
- Dart语言的HTTP扩展包功能详解
- MoonMaker: 投资组合加固神器,助力$GME投资者登月
- 计算机毕业设计答辩PPT模板下载