串并联电路电流规律探究

版权申诉
0 下载量 200 浏览量 更新于2024-09-11 收藏 2.49MB PPT 举报
该资源是一个关于15.5章节串并联电路中电流规律的PPT课件,主要内容包括电流的定义、单位、常见电流大小、电流表的使用以及电流表连接规则,并通过一个实际问题分析了电流表指针迅速摆动到最大刻度的原因。 在电路理论中,电流是衡量电荷流动速率的物理量,用字母I表示,单位是安培(A)。电流的强度可以通过电量Q与时间t的比值来计算,即I=Q/t。电流有多个单位,如毫安(mA)和微安(μA),它们之间存在1A=10^3mA和1A=10^6μA的关系。在日常生活中,不同的电器设备工作时的电流大小不同,例如计算器大约为100μA,手电筒约为200mA,房间灯泡约为0.2A,电冰箱约为1A,而家用空调的电流可能更高。 电流表是测量电流大小的仪器,实验室常用的电流表有两种量程,通常有0-0.6A和0-3A两种规格。电流表的读数需要根据量程和分度值来确定,且电流表必须与被测用电器串联,确保电流只通过电流表一次。连接时要注意电流的方向,遵循“+”进“-”出的原则。如果电流过大,应选择合适的量程或采用试触法来避免损坏电流表。特别强调,禁止将电流表未经用电器直接接到电源两端,因为这可能导致电流过大,烧毁电流表。 在描述的问题中,某同学在进行电流测量时,电流表的指针迅速摆动到最大刻度。这种情况通常表明电路中的电流远超出了电流表的最大量程,因此最可能的原因是C,即线路某处发生了短路。短路时,电流会以极大的速度通过电路,导致电流表读数瞬间达到最大。其他选项,如A(接线柱接反)会导致电流表反向偏转,B(灯丝断了)会使电路不通,D(条件不足,无法判断)则不是最直接的原因。

import numpy as np # 定义参数 n_lags = 31 # 滞后阶数 n_vars = 6 # 变量数量 alpha = 0.05 # 置信水平 # 准备数据 data = np.array([820.95715,819.17877,801.60077,30,26164.9,11351.8], [265.5425,259.05476,257.48619,11.4,12525,4296.5], [696.9681,685.54114,663.32014,47.5,23790.484,8344.8], [4556.1091,440.58995,433.21995,24.6,12931.388,5575.4], [360.08693,353.75386,351.59186,26.9,11944.322,4523], [938.55919,922.25468,894.26468,35.3,27177.893,8287.4], [490.47837,477.35237,385.17474,24.5,14172.1,6650.4], [553.15463,452.35042,425.92277,32.9,16490.17,7795], [740.35759,721.68259,721.68259,15.5,26117.755,7511.7], [1581.99576,1579.50357,1571.23257,65.4,59386.7,15347.2], [1360.91636,1360.20825,1358.11425,66.4,57160.533,8080], [564.06146,560.91611,559.08711,35.2,22361.86,6165.4], [732.17283,727.25063,725.93863,29.7,22177.389,4393.2], [424.12777,424.10579,411.19979,21.6,14691.359,4695.6], [1439.38133,1437.85585,1436.67585,77.3,50123.672,15479], [961.92496,935.21589,931.28189,45.7,28073.9,11273.3], [881.92808,868.65804,832.44504,46.1,27409.15,11224.4], [713.32299,710.75882,707.42682,35.8,24887.111,5164.2], [2657.28891,2599.20299,2515.67859,92,94207.179,19066.4], [420.95033,418.22931,416.80631,25.6,13309.9,7020], [193.92636,193.84936,193.83836,10.9,6133,6139.5], [499.81565,493.73678,485.2468,20.9,13555.897,3412], [951.93942,939.58126,930.049,45.6,27245.608,7752.5], [309.88498,297.05055,295.69055,22.6,11929.038,3903.2], [411.87141,406.63838,389.29638,27.8,12197.085,3834.1], [45.53226,39.24379,55.34631667,7.5,1872.333333,564.3], [532.67282,524.78031,520.89851,24,18041.642,3902], [269.00374,266.96222,211.14422,20.3,7163.069,3515.4], [91.95276,88.77094,85.74583,7.7,1962.8,645.8], [120.60234,116.39872,113.85872,9.8,4227.003,1706.2], [362.98862,350.36495,318.70232,23.7,11615.383,5752.1]) # 计算VAR模型的系数 X = np.zeros((data.shape[0] - n_lags, n_lags * n_vars)) y = np.zeros((data.shape[0] - n_lags, n_vars)) for i in range(n_lags, data.shape[0]): X[i-n_lags, :] = data[i-n_lags:i, :].reshape(1, -1) y[i-n_lags, :] = data[i, :] coefficients = np.linalg.inv(X.T @ X) @ X.T @ y # 计算残差 residuals = y - X @ coefficients # 计算PVAR模型的紧贴矩阵 T = residuals[n_lags:, :] @ residuals[:-n_lags, :].T / (data.shape[0] - n_lags) # 计算PVAR模型的系数 u, s, vh = np.linalg.svd(T) S_inv = np.diag(np.sqrt(s[:n_vars])) @ np.linalg.inv(vh[:n_vars, :]) A = S_inv @ u[:, :n_vars].T @ residuals[n_lags:, :].T # 计算置信区间 t_value = np.abs(np.tinv(alpha/2, data.shape[0]-n_lags-n_vars)) se = np.sqrt((1/(data.shape[0]-n_lags-n_vars)) * (np.sum(residuals[n_lags:, :]**2) / (data.shape[0]-n_lags-n_vars-1))) conf_int = t_value * se print("PVAR模型的系数:\n", A) print("置信区间:[{:.4f}, {:.4f}]".format(A.mean() - conf_int, A.mean() + conf_int))这段代码有什么错误

2023-05-22 上传