基于统计概率的NS-2排队系统仿真研究与MATLAB分析

需积分: 10 2 下载量 15 浏览量 更新于2024-09-07 1 收藏 429KB PDF 举报
该论文深入探讨了基于统计概率转移矩阵的排队系统仿真研究,由作者周宏霞在北京市北京邮电大学信息与通信工程学院完成。研究聚焦于M/M/1、M/D/1和M/M/1(k)三种常见的排队系统模型,这些系统在实际生活中广泛应用于各种服务系统,如电信网络中的呼叫中心、交通系统等。 在NS-2(网络模拟器)这个强大的仿真平台上,作者对这三种排队系统进行了细致的行为仿真。NS-2是一个功能丰富的网络仿真工具,用于理解和预测网络性能,特别是在处理随机事件和拥塞情况时。作者提出了一种创新的统计分析方法,该方法结合了MATLAB对仿真结果(tracefile)的深入统计分析,生成了概率转移矩阵。这种矩阵反映了系统状态之间的转移概率,对于理解系统的动态特性至关重要。 通过对实验数据的分析,论文展示了这种方法能够有效地逼近理论分析结果,证明其在M/M/1、M/D/1和M/M/1(k)等不同类型的排队系统中具有良好的适用性和精度。此外,该研究还验证了Little's公式,这是衡量排队系统性能的关键指标之一,用于估计平均顾客等待时间。 文章的关键词包括M/M/1、M/D/1、M/M/1(k)、排队系统转移概率矩阵仿真、NS-2以及MATLAB,强调了研究的技术核心和工具支持。论文的中图分类号为TP301.63和TP393,表明它位于理论计算机科学和系统工程的交叉领域,对随机服务系统的研究有着重要的理论价值。 论文的引言部分回顾了排队论的基本概念和起源,指出排队论作为研究随机服务系统的基础,对现代社会的各个领域都有深远影响。随着信息技术的发展,排队论的应用愈发广泛,尤其是在通信网络和服务管理中。 这篇论文提供了一种实用且理论性强的排队系统仿真分析方法,不仅有助于更好地理解和预测系统行为,还为其他研究者提供了有价值的参考框架,推动了排队理论在实际问题中的应用和发展。