第 39 卷 第 12 期 自 动 化 学 报 Vol. 39, No. 12
2013 年 12 月 ACTA AUTOMATICA SINICA December, 2013
复杂网络同步态与孤立节点解的关系
陈 娟
1
陆君安
2
周 进
2
摘 要 复杂网络同步是复杂系统和复杂网络的前沿研究方向之一, 已经取得很大的进展. 但是对于节点以耦合矩阵左特征
向量加权平均态、孤立节点的解与网络的同步态之间具有什么关系, 什么是网络的同步态和同步轨等基本问题仍然缺乏深入
的研究, 弄清楚这些问题对于复杂网络同步的理解和应用具有重要的意义. 本文采用数学分析方法证明, 如果网络同步, 则加
权平均态 ¯x =
P
N
j=1
ξ
j
x
j
可以定义为同步态, 一般来说, ¯x 在正极限集的意义下, 也就是孤立节点方程 ˙s(t) = f(s(t)) 的解. 因
此在实际应用中, 把孤立节点方程的解 s(t) 与加权平均态 ¯x 不加区别地对待是合理的. 同步态是不依赖于初始条件的通解,
而同步轨是依赖于初始条件的特解. 对于混沌节点的网络, 同步态应该理解为吸引子, 而不是某一条轨道. 最后, 本文还提供一
些实例加以说明, 并指出一些尚待解决的问题.
关键词 复杂网络, 同步态, 同步轨, 孤立节点
引用格式 陈娟, 陆君安, 周进. 复杂网络同步态与孤立节点解的关系. 自动化学报, 2013, 39(12): 2111−2120
DOI 10.3724/SP.J.1004.2013.02111
On the Relationship between the Synchronous State and the Solution of
an Isolated Node in a Complex Network
CHEN Juan
1
LU Jun-An
2
ZHOU Jin
2
Abstract Synchronization is one of the frontier researches in complex systems and complex networks, which has been
fruitfully exploited. However, further research is still necessary for some fundamental questions, such as the definitions
of synchronous state and synchronous orbit of a dynamical network, relationships among the weighted mean state, the
solution of the individual system and the synchronous state of the entire network. It is of great importance to address
these issues so as to contribute to an integrated understanding and practical applications of synchronization in complex
networks. In this paper, mathematical analysis is used to demonstrate that if a network synchronizes, the synchronous
state can be defined as the weighted mean state ¯x =
P
N
j=1
ξ
j
x
j
, which is the solution of the isolated system ˙s(t) = f (s(t))
in the sense of the positive limit set. Therefore, there is no difference between the solution of the individual system s(t)
and the weighted mean state ¯x in practice. Compared to the synchronous state which is a general solution independent
of initial conditions, the synchronous orbit is a special solution related to initial conditions. As for networks coupled with
chaotic systems, the synchronous state should be viewed as attractors, instead of a particular orbit. Finally, numerical
simulations are provided to illustrate the effectiveness of our theoretical results, and some problems needed to be further
studied are also included.
Key words Complex networks, synchronous state, synchronous orbit, isolated node
Citation Chen Juan, Lu Jun-An, Zhou Jin. On the relationship between the synchronous state and the solution of an
isolated node in a complex network. Acta Automatica Sinica, 2013, 39(12): 2111−2120
复 杂 网 络 是 当 今 科 学 和 技 术 的 前 沿 研 究 领
域
[1−7]
, 而复杂网络的同步是这一领域的重要研究
方向
[8−26]
. 同步现象在电力网络、生物网络、社会
收稿日期 2013-02-26 录用日期 2013-08-01
Manuscript received February 26, 2013; accepted August 1,
2013
国家自然科学基金 (11172215, 61004096, 61174028, 61304164, 613
74173) 资助
Supported by National Natural Science Foundation of China
(11172215, 61004096, 61174028, 61304164, 61374173)
本文责任编委 赵千川
Recommended by Associate Editor ZHAO Qian-Chuan
1. 武汉科技大学理学院 武汉 430081 2. 武汉大学数学与统计学院
武汉 430072
1. College of Sciences, Wuhan University of Science and Tech-
nology, Wuhan 430081 2. School of Mathematics and Statis-
tics, Wuhan University, Wuhan 430072
网络、通信网络等很多实际网络中可以看到, 也被应
用到控制理论、保密通讯等
[23−24]
. 网络同步的研究
已经取得很大进展, 其中最多的是研究复杂网络同
步与网络的拓扑结构之间的关系
[13−16]
, 以理解现实
网络更为复杂的演化行为. 但是在一些基本问题上
仍然缺乏深入的研究, 比如同步态的定义问题. 同步
态是网络控制和同步的最终状态, 网络的结构和节
点动力学是如何影响同步态的, 这对于网络的实际
应用以及网络的结构设计具有十分重要的意义. 例
如, 在一些神经元网络以及生物化学网络中, 同步态
在复杂系统的功能方面有着显著作用, 网络的同步
能够使系统的功能在一定程度上最优
[27]
.