基于Matlab的图像分水岭算法与边缘检测技术

版权申诉
0 下载量 9 浏览量 更新于2024-10-17 收藏 2KB RAR 举报
资源摘要信息:"watershed-and-edge-detection.rar_watershed_分水岭_分水岭算法 matlab_开闭运算" 标题中的“watershed”即“分水岭”,它是图像处理领域中一种非常重要的算法,常用于图像分割,尤其是用于分割图像中相互接触的目标物体。分水岭算法的灵感来自于地理学中的分水岭概念,其基本思想是将图像中的每一个像素点想象为地形表面的一个点,亮度较高的区域比亮度较低的区域高。如果将这些点想象成下起雨水,则雨滴会向亮度较低的区域流动。当雨滴流向不同的区域时,它们之间形成“分水岭”,即为不同目标的分界线。 描述中提到的“对图像先进行滤波,然后进行开闭运算的预处理”,这是分水岭算法实际应用中的一个重要步骤。滤波是图像处理中常用的技术,旨在去除噪声,平滑图像,以减少后续处理的干扰。开闭运算是一种形态学运算,分别具有去除小对象、平滑较大对象的边缘和填充小洞、连通相邻对象的功能。通过这些预处理步骤,可以有效地减少过分割现象的发生,即错误地将一个目标分割成多个部分的情况。 边缘检测算法是一种基本的图像处理技术,其目的是标识出图像中亮度变化明显的点。边缘通常是图像中不同区域的分界线,因此边缘检测对于图像的特征提取和对象识别至关重要。常见的边缘检测算法包括Canny边缘检测、Sobel算子、Prewitt算子等。 从文件名称“jizhong_jibuzhong.m”推测,该文件可能包含与图像处理中“集中、集合”相关的MATLAB函数或脚本,这可能涉及将多个图像区域合并成一个区域的处理。文件“边缘提取.m”显然与边缘检测有关,包含在MATLAB中实现边缘检测的代码。而“算法.txt”则可能包含有关分水岭算法和边缘检测算法的理论描述、实现细节或是使用说明。 标签中的“watershed 分水岭 分水岭算法_matlab 开闭运算”进一步强调了文件与分水岭算法、MATLAB编程以及形态学开闭运算相关性。 在MATLAB环境下,分水岭算法和边缘检测通常可以使用内置函数或者编写脚本来实现。使用MATLAB内置函数如“watershed”、“imfilter”、“imopen”、“imclose”可以方便地进行图像滤波、开闭运算和分水岭分割。此外,MATLAB还提供了“edge”函数用于边缘检测,这些函数都是图像处理工具箱中的重要组成部分。 总而言之,文件“watershed-and-edge-detection.rar”涉及的是一系列图像处理技术,包括分水岭算法、图像预处理(滤波和开闭运算)和边缘检测。这些技术在机器视觉、图像分析、模式识别等领域有着广泛的应用。通过MATLAB这一强大的工具,可以方便地实现这些算法,并对图像进行深入分析和处理。

import scipy.io import mne from mne.bem import make_watershed_bem # Load .mat files inner_skull = scipy.io.loadmat('E:\MATLABproject\data\MRI\Visit1_040318\\tess_mri_COR_MPRAGE_RECON-mocoMEMPRAGE_FOV_220-298665.inner_skull.mat') outer_skull = scipy.io.loadmat('E:\MATLABproject\data\MRI\Visit1_040318\\tess_mri_COR_MPRAGE_RECON-mocoMEMPRAGE_FOV_220-298665.outer_skull.mat') scalp = scipy.io.loadmat('E:\MATLABproject\data\MRI\Visit1_040318\\tess_mri_COR_MPRAGE_RECON-mocoMEMPRAGE_FOV_220-298665.scalp.mat') print(inner_skull.keys()) # Assuming these .mat files contain triangulated surfaces, we will extract vertices and triangles # This might need adjustment based on the actual structure of your .mat files inner_skull_vertices = inner_skull['Vertices'] inner_skull_triangles = inner_skull['Faces'] outer_skull_vertices = outer_skull['Vertices'] outer_skull_triangles = outer_skull['Faces'] scalp_vertices = scalp['Vertices'] scalp_triangles = scalp['Faces'] # Prepare surfaces for MNE surfs = [ mne.bem.BEMSurface(inner_skull_vertices, inner_skull_triangles, sigma=0.01, id=4), # brain mne.bem.BEMSurface(outer_skull_vertices, outer_skull_triangles, sigma=0.016, id=3), # skull mne.bem.BEMSurface(scalp_vertices, scalp_triangles, sigma=0.33, id=5), # skin ] # Create BEM model model = mne.bem.BEM(surfs, conductivity=[0.3, 0.006, 0.3], is_sphere=False) model.plot(show=False) # Create BEM solution solution = mne.make_bem_solution(model) 运行代码时报错; Traceback (most recent call last): File "E:\pythonProject\MEG\头模型.py", line 24, in <module> mne.bem.BEMSurface(inner_skull_vertices, inner_skull_triangles, sigma=0.01, id=4), # brain AttributeError: module 'mne.bem' has no attribute 'BEMSurface'

147 浏览量

运行代码: import scipy.io import mne from mne.bem import make_watershed_bem import random import string # Load .mat files inner_skull = scipy.io.loadmat('E:\MATLABproject\data\MRI\Visit1_040318\\tess_mri_COR_MPRAGE_RECON-mocoMEMPRAGE_FOV_220-298665.inner_skull.mat') outer_skull = scipy.io.loadmat('E:\MATLABproject\data\MRI\Visit1_040318\\tess_mri_COR_MPRAGE_RECON-mocoMEMPRAGE_FOV_220-298665.outer_skull.mat') scalp = scipy.io.loadmat('E:\MATLABproject\data\MRI\Visit1_040318\\tess_mri_COR_MPRAGE_RECON-mocoMEMPRAGE_FOV_220-298665.scalp.mat') print(inner_skull.keys()) # Assuming these .mat files contain triangulated surfaces, we will extract vertices and triangles # This might need adjustment based on the actual structure of your .mat files inner_skull_vertices = inner_skull['Vertices'] inner_skull_triangles = inner_skull['Faces'] outer_skull_vertices = outer_skull['Vertices'] outer_skull_triangles = outer_skull['Faces'] scalp_vertices = scalp['Vertices'] scalp_triangles = scalp['Faces'] subjects_dir = 'E:\MATLABproject\data\MRI\Visit1_040318' subject = ''.join(random.choices(string.ascii_uppercase + string.ascii_lowercase, k=8)) # Prepare surfaces for MNE # Prepare surfaces for MNE surfs = [ mne.make_bem_model(inner_skull_vertices, inner_skull_triangles, conductivity=[0.01], subjects_dir=subjects_dir), # brain mne.make_bem_model(outer_skull_vertices, outer_skull_triangles, conductivity=[0.016], subjects_dir=subjects_dir), # skull mne.make_bem_model(scalp_vertices, scalp_triangles, conductivity=[0.33], subjects_dir=subjects_dir), # skin ] # Create BEM solution model = make_watershed_bem(surfs) solution = mne.make_bem_solution(model) 时报错: Traceback (most recent call last): File "E:\pythonProject\MEG\头模型.py", line 30, in <module> mne.make_bem_model(inner_skull_vertices, inner_skull_triangles, conductivity=[0.01], subjects_dir=subjects_dir), # brain File "<decorator-gen-68>", line 12, in make_bem_model File "E:\anaconda\envs\pythonProject\lib\site-packages\mne\bem.py", line 712, in make_bem_model subject_dir = op.join(subjects_dir, subject) File "E:\anaconda\envs\pythonProject\lib\ntpath.py", line 117, in join genericpath._check_arg_types('join', path, *paths) File "E:\anaconda\envs\pythonProject\lib\genericpath.py", line 152, in _check_arg_types raise TypeError(f'{funcname}() argument must be str, bytes, or ' TypeError: join() argument must be str, bytes, or os.PathLike object, not 'ndarray' 进程已结束,退出代码1

147 浏览量

def cell_counter(image, min_area=20): """细胞计数""" # for s in image: df = pd.DataFrame() image =cv2.imread(image) gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(gray, 100, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3)) opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=2) distance = ndi.distance_transform_edt(opening) coords = peak_local_max(distance, min_distance=9, footprint=np.ones((7, 7)), labels=opening) mask = np.zeros(distance.shape, dtype=bool) mask[tuple(coords.T)] = True markers, _ = ndi.label(mask) labels = watershed(-distance, markers, mask=opening, watershed_line=True) labels_area = [region.area for region in regionprops(labels) if region.area > min_area] cell_num = len(labels_area) print(cell_num) df = df.append(pd.DataFrame({(file_path,cell_num)}, index=[0]), ignore_index=True) print(df) # return cell_num # df.to_excel('1.xlsx', index=False) if __name__ == '__main__': path = r'D:\0531test' slide_path = os.listdir(path) # df =pd.DataFrame(slide_path) # df.to_excel('1.xlsx',index=False) for i in slide_path: slide_name = os.path.basename(i) #slide_name 样本名称 file_path = os.path.join(path,slide_name) images = os.listdir(file_path) f = glob.glob(os.path.join(file_path, '*.jpg')) for image in f: # print(s) # for s in images: # image_name = os.path.basename(s) # name = image_name.replace('.jpg','') # df = df.append(pd.DataFrame({(file_path,name[:-8])}, index=[0]), ignore_index=True) cell_counter(image) # df.to_excel('1.xlsx',index=False)

254 浏览量

怎么精简代码func BasinTree(id string) ([]*models.Basin, error) { var basins []*models.Basin res := common.DB.Where("watershed_id = ?", id).Find(&basins) for _, item := range basins { if res.RowsAffected > 0 { //查询流域内所有河道 var subrivers []*models.SubRiver var rivers models.PsRiver common.DB.Model(&rivers).Where("watershed_id = ?", item.ID).Find(&subrivers) item.SubRivers = subrivers var totalL float64 common.DB.Table("ps_rivers").Select("COALESCE(sum(segment_length), 0)").Where("watershed_id = ?", item.ID).Scan(&totalL) item.TotalLength = totalL //查询流域内所有湖泊 var sublakes []*models.SubLake var lakes models.PsLake common.DB.Model(&lakes).Where("watershed_id = ?", item.ID).Find(&sublakes) var totalA float64 common.DB.Table("ps_lakes").Select("COALESCE(sum(area),0)").Where("watershed_id = ?", item.ID).Scan(&totalA) item.TotalArea = totalA item.SubLakes = sublakes } } for _, item := range basins { if res.RowsAffected > 0 { id = strconv.FormatUint(uint64(item.ID), 10) item.SubBasins, _ = BasinTree(id) for _, v := range item.SubBasins { item.TotalArea = item.TotalArea + v.TotalArea item.TotalLength = item.TotalLength + v.TotalLength } if len(item.SubBasins) == 0 { return nil, nil } } } return basins, nil } func BasinInfo(ctx *gin.Context) { id := ctx.Query("id") var req models.Basin var err error resp := models.Response{ Code: 0, Msg: "success", } if len(id) == 0 { resp.Code = 400 resp.Msg = "请输入id值" ctx.JSON(400, resp) return } res := common.DB.Where("id = ?", id).Take(&req) if res.Error != nil { resp.Code = 400 resp.Msg = "查询失败" resp.Data = res.Error ctx.JSON(400, resp) return } //查询流域内所有河道 var subrivers []*models.SubRiver var rivers models.PsRiver var totalL float64 common.DB.Model(&rivers).Where("watershed_id = ?", id).Find(&subrivers) common.DB.Table("ps_rivers").Select("COALESCE(sum(segment_length), 0)").Where("watershed_id = ?", id).Scan(&totalL) req.SubRivers = subrivers req.TotalLength = totalL //查询流域内所有湖泊 var sublakes []*models.SubLake var lakes models.PsLake var totalA float64 common.DB.Model(&lakes).Where("watershed_id = ?", id).Find(&sublakes) common.DB.Table("ps_lakes").Select("COALESCE(sum(area),0)").Where("watershed_id = ?", id).Scan(&totalA) req.SubLakes = sublakes req.TotalArea = totalA req.SubBasins, err = BasinTree(id) if err != nil { resp.Code = 500 resp.Msg = "创建树失败" resp.Data = err ctx.JSON(500, resp) return } for _, v := range req.SubBasins { req.TotalArea = req.TotalArea + v.TotalArea req.TotalLength = req.TotalLength + v.TotalLength } resp.Data = req ctx.JSON(200, resp) }

126 浏览量