MATLAB实现牛顿插值方法教程与源码

需积分: 5 0 下载量 2 浏览量 更新于2024-10-01 收藏 1024B ZIP 举报
资源摘要信息:"牛顿插值 MATLAB源程序代码.zip_rezip1.zip" 牛顿插值是一种数值分析中常用的插值方法,其基本思想是利用已知数据点构造多项式函数,使得该函数精确通过这些点。牛顿插值的核心在于牛顿多项式,通过差商的概念递归计算每个数据点的值,构建出一个线性组合逼近函数。 在MATLAB中实现牛顿插值涉及以下步骤: 1. 输入数据:首先,需要在MATLAB中定义输入数据点,包括x坐标向量和y坐标向量。例如: ```matlab x = [x0, x1, ..., xn]; y = [y0, y1, ..., yn]; ``` 2. 计算差商:差商是实现牛顿插值的关键,它表示了相邻数据点间的变化率。差商的计算可以通过嵌套循环完成,从第一阶开始,逐步计算到最后一阶: ```matlab f = zeros(n+1, 1); % 初始化差商向量 f(1) = y(1); for i = 2:n+1 for j = 1:i-1 f(i) = (f(i) - f(j)) / (x(i) - x(j)); end end ``` 3. 构建插值函数:根据计算出的差商构建插值多项式。这一步涉及对x和x向量中的元素之间的差的乘积进行求和,使用匿名函数表达式表示: ```matlab newton_interpolate = @(x) y0 + sum(f .* prod(x - x.', 2)); ``` 这里,`prod(x - x.', 2)`计算每个x与x向量元素差的乘积,`sum(f .* ...)`则是将所有差商乘以相应的乘积并求和。 4. 插值评估:使用构建的插值函数,对任意新的x值进行插值计算: ```matlab x_new = ...; % 需要插值的新x值 y_new = newton_interpolate(x_new); ``` 牛顿插值的优点在于提供精确的插值结果,尤其适合数据点较为密集的情况。然而,在数据点分布不均或包含噪声时,可能会出现插值结果的振荡或不准确性。这时可能需要考虑使用拉格朗日插值或样条插值等其他插值方法。 在实际的MATLAB源程序代码中,还可能包含对算法稳定性和效率进行优化或错误处理的部分,以确保插值过程更加稳健。 注意,本摘要信息未提供具体的文件内容,而是基于标题和描述生成了相关知识点。文件名"21.zip"和"a.txt"未在描述中提及具体内容,故此处不予展开。

优化这段代码 for j in n_components: estimator = PCA(n_components=j,random_state=42) pca_X_train = estimator.fit_transform(X_standard) pca_X_test = estimator.transform(X_standard_test) cvx = StratifiedKFold(n_splits=5, shuffle=True, random_state=42) cost = [-5, -3, -1, 1, 3, 5, 7, 9, 11, 13, 15] gam = [3, 1, -1, -3, -5, -7, -9, -11, -13, -15] parameters =[{'kernel': ['rbf'], 'C': [2x for x in cost],'gamma':[2x for x in gam]}] svc_grid_search=GridSearchCV(estimator=SVC(random_state=42), param_grid=parameters,cv=cvx,scoring=scoring,verbose=0) svc_grid_search.fit(pca_X_train, train_y) param_grid = {'penalty':['l1', 'l2'], "C":[0.00001,0.0001,0.001, 0.01, 0.1, 1, 10, 100, 1000], "solver":["newton-cg", "lbfgs","liblinear","sag","saga"] # "algorithm":['auto', 'ball_tree', 'kd_tree', 'brute'] } LR_grid = LogisticRegression(max_iter=1000, random_state=42) LR_grid_search = GridSearchCV(LR_grid, param_grid=param_grid, cv=cvx ,scoring=scoring,n_jobs=10,verbose=0) LR_grid_search.fit(pca_X_train, train_y) estimators = [ ('lr', LR_grid_search.best_estimator_), ('svc', svc_grid_search.best_estimator_), ] clf = StackingClassifier(estimators=estimators, final_estimator=LinearSVC(C=5, random_state=42),n_jobs=10,verbose=0) clf.fit(pca_X_train, train_y) estimators = [ ('lr', LR_grid_search.best_estimator_), ('svc', svc_grid_search.best_estimator_), ] param_grid = {'final_estimator':[LogisticRegression(C=0.00001),LogisticRegression(C=0.0001), LogisticRegression(C=0.001),LogisticRegression(C=0.01), LogisticRegression(C=0.1),LogisticRegression(C=1), LogisticRegression(C=10),LogisticRegression(C=100), LogisticRegression(C=1000)]} Stacking_grid =StackingClassifier(estimators=estimators,) Stacking_grid_search = GridSearchCV(Stacking_grid, param_grid=param_grid, cv=cvx, scoring=scoring,n_jobs=10,verbose=0) Stacking_grid_search.fit(pca_X_train, train_y) var = Stacking_grid_search.best_estimator_ train_pre_y = cross_val_predict(Stacking_grid_search.best_estimator_, pca_X_train,train_y, cv=cvx) train_res1=get_measures_gridloo(train_y,train_pre_y) test_pre_y = Stacking_grid_search.predict(pca_X_test) test_res1=get_measures_gridloo(test_y,test_pre_y) best_pca_train_aucs.append(train_res1.loc[:,"AUC"]) best_pca_test_aucs.append(test_res1.loc[:,"AUC"]) best_pca_train_scores.append(train_res1) best_pca_test_scores.append(test_res1) train_aucs.append(np.max(best_pca_train_aucs)) test_aucs.append(best_pca_test_aucs[np.argmax(best_pca_train_aucs)].item()) train_scores.append(best_pca_train_scores[np.argmax(best_pca_train_aucs)]) test_scores.append(best_pca_test_scores[np.argmax(best_pca_train_aucs)]) pca_comp.append(n_components[np.argmax(best_pca_train_aucs)]) print("n_components:") print(n_components[np.argmax(best_pca_train_aucs)])

2023-07-14 上传