揭秘Google大规摸分布式系统追踪基础设施:Dapper论文解析

5星 · 超过95%的资源 需积分: 49 20 下载量 87 浏览量 更新于2024-09-10 收藏 1.48MB PDF 举报
"Google Dapper论文深入探讨了2010年4月发布的一份技术报告,标题为"Google Technical Report Dapper - 2010-1"。这份报告聚焦于大型分布式系统中的关键问题,特别是在现代互联网服务的复杂架构背景下。这些服务通常由多个软件模块构成,跨团队、语言和地理位置开发,分布在数千台机器上,跨越多个物理设施。 Dapper是Google在生产环境中部署的分布式系统追踪基础设施,其目标在于协助理解和优化系统的运行行为,尤其是在性能问题上提供有价值的洞察。论文作者包括Benjamin Siegelman、Luiz Andre Barroso、Mike Burrows等人,他们在设计中着重考虑了效率、应用层面的透明度以及在大规模系统中的广泛部署。 与Magpie[3]和X-Trace[12]等其他追踪系统在概念上有相似之处,但Dapper的设计选择具有独特性。它旨在减少跟踪的开销,同时保持对应用程序行为的低侵入性。论文详细阐述了如何在处理复杂度和性能之间取得平衡,以及如何通过精心设计实现了在大规模分布式环境中的无缝集成。 Dapper的成功在于它能够实现在不影响系统性能的前提下,收集到详尽的追踪数据,这对于故障排查、性能调优和系统优化至关重要。通过阅读这篇论文,读者可以了解到一个大型互联网公司如何解决分布式追踪挑战,以及如何将这些经验应用于自己的系统设计中。这是一篇对于理解分布式系统监控和优化不可或缺的研究资料,对于IT专业人士来说,无论是系统架构师、开发者还是运维人员,都具有很高的参考价值。"
2017-11-13 上传
Modern Internet services are often implemented as complex, large-scale distributed systems. These applications are constructed from collections of software modules that may be developed by different teams, perhaps in different programming languages, and could span many thousands of machines across multiple physical facilities. Tools that aid in understanding system behavior and reasoning about performance issues are invaluable in such an environment. Here we introduce the design of Dapper, Google’s production distributed systems tracing infrastructure, and describe how our design goals of low overhead, application-level transparency, and ubiquitous deployment on a very large scale system were met. Dapper sharesconceptualsimilaritieswithothertracingsystems, particularlyMagpie[3]andX-Trace[12],butcertaindesign choices were made that have been key to its success in our environment, such as the use of sampling and restricting the instrumentation to a rather small number of common libraries. The main goal of this paper is to report on our experience building, deploying and using the system for over two years, since Dapper’s foremost measure of success has been its usefulness to developer and operations teams. Dapper began as a self-contained tracing tool but evolved into a monitoring platform which has enabled thecreationofmanydifferenttools, someofwhichwere notanticipatedbyitsdesigners. Wedescribeafewofthe analysis tools that have been built using Dapper, share statisticsaboutitsusagewithinGoogle,presentsomeexample use cases, and discuss lessons learned so far.