"卷积神经网络CNN相关代码注释及示例:优化MNIST数据集训练及分类"
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
The provided code is related to a Convolutional Neural Network (CNN) and contains annotations for each line of code. It starts by clearing all existing variables and figures, adding the necessary paths for data and utilities, and then loading the MNIST dataset in uint8 format. The dataset is then preprocessed by reshaping the training and test images and dividing by 255 to bring their values into the range [0, 1]. The training and test labels are also converted to double format. The code then moves on to define the architecture of the CNN. It sets up the layers of the network, starting with an input layer. The comments in the code suggest that running one epoch will take about 200 seconds and result in an error rate of around 11%. It is also mentioned that with 100 epochs, the error rate will decrease to around 1.2%. The provided code snippet is useful for understanding how to implement a CNN using MATLAB. However, it lacks detailed explanations of the specific layers and parameters used in the network. It would be beneficial to include further comments or documentation to elucidate the purpose of each layer and the overall network structure. In conclusion, the code gives an overview of setting up and training a CNN for image recognition tasks using the MNIST dataset. Additional documentation and comments would enhance its utility for those seeking to understand and implement CNNs.
剩余18页未读,继续阅读
- 粉丝: 6774
- 资源: 3万+
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- Hadoop生态系统与MapReduce详解
- MDS系列三相整流桥模块技术规格与特性
- MFC编程:指针与句柄获取全面解析
- LM06:多模4G高速数据模块,支持GSM至TD-LTE
- 使用Gradle与Nexus构建私有仓库
- JAVA编程规范指南:命名规则与文件样式
- EMC VNX5500 存储系统日常维护指南
- 大数据驱动的互联网用户体验深度管理策略
- 改进型Booth算法:32位浮点阵列乘法器的高速设计与算法比较
- H3CNE网络认证重点知识整理
- Linux环境下MongoDB的详细安装教程
- 压缩文法的等价变换与多余规则删除
- BRMS入门指南:JBOSS安装与基础操作详解
- Win7环境下Android开发环境配置全攻略
- SHT10 C语言程序与LCD1602显示实例及精度校准
- 反垃圾邮件技术:现状与前景