生物信息学算法入门

5星 · 超过95%的资源 需积分: 32 64 下载量 133 浏览量 更新于2024-10-14 收藏 3.04MB PDF 举报
"《AN INTRODUCTION TO BIOINFORMATICS ALGORITHMS》是生物信息学领域一本经典的教材,由多位知名专家编写,是国外生物学习者的必备教程。这本书由NEIL C. JONES 和 PAVEL A. PEVZNER合作撰写,并由Sorin Istrail、Pavel Pevzner和Michael Waterman编辑。它涵盖了生物信息学的基础算法,旨在通过计算、统计、实验和技术手段的结合,推动分子生物学新发现和工具的发展。" 在生物信息学中,算法起着至关重要的作用,因为它们是解决复杂生物学问题的关键工具。这本书《An Introduction to Bioinformatics Algorithms》深入浅出地介绍了这个领域,使读者能够理解并应用这些算法来分析生物数据。作者Pavel A. Pevzner是该领域的权威人物,他在2000年出版的《Computational Molecular Biology: An Algorithmic Approach》中也展示了他对计算方法的深刻理解。 生物信息学是一门跨学科的科学,它利用计算机科学、统计学和数学的方法来研究生物系统,特别是在基因组、蛋白质组和代谢网络层面。《Computational Methods for Modeling Biochemical Networks》和《Microarrays for an Integrative Genomics》等书籍进一步拓展了这一主题,分别探讨了生物化学网络的建模方法和集成基因组学中的微阵列技术。 在分子生物学中,算法的应用包括但不限于基因识别、序列比对、进化树构建、基因调控网络的解析和代谢途径分析。例如,书中可能会讨论Smith-Waterman算法和BLAST(Basic Local Alignment Search Tool)用于寻找相似的DNA或蛋白质序列。此外,还可能涉及概率模型,如隐马尔可夫模型(HMMs),这些模型在预测基因结构和识别转录因子结合位点时非常有用。 生物信息学的另一个重要方面是数据分析,特别是在后基因组时代,随着高通量测序技术的普及,产生了海量的基因表达和表观遗传数据。例如,《Gene Regulation and Metabolism: Postgenomic Computation Approaches》可能会涵盖如何利用计算方法来理解基因表达模式和代谢途径的变化。 这本书是进入生物信息学领域的理想起点,它不仅提供了理论基础,还提供了实践应用的例子,帮助读者掌握解决实际生物学问题的计算工具。通过学习这些算法,科学家们能够更有效地处理和解读生物数据,推动生物学研究的进步。

精简下面表达:Existing protein function prediction methods integrate PPI networks and multivariate bioinformatics data to improve the performance of function prediction. By combining multivariate information, the interactions between proteins become diverse. Different interactions’ functions in functional prediction are various. Combining multiple interactions simply between two proteins can effectively reduce the effect of false negatives and increase the number of predicted functions, but it can also increase the number of false positive functions, which contribute to nonobvious enhancement for the overall functional prediction performance. In this article, we have presented a framework for protein function prediction algorithms based on PPI network and semantic similarity with the addition of protein hierarchical functions to them. The framework relies on diverse clustering algorithms and the calculation of protein semantic similarity for protein function prediction. Classification and similarity calculations for protein pairs clustered by the functional feature are more accurate and reliable, allowing for the prediction of protein function at different functional levels from different proteomes, and giving biological applications greater flexibility.The method proposed in this paper performs well on protein data from wine yeast cells, but how well it matches other data remains to be verified. Yet until now, most unknown proteins have only been able to predict protein function by calculating similarities to their homologues. The predictions result of those unknown proteins without homologues are unstable because they are relatively isolated in the protein interaction network. It is difficult to find one protein with high similarity. In the framework proposed in this article, the number of features selected after clustering and the number of protein features selected for each functional layer has a significant impact on the accuracy of subsequent functional predictions. Therefore, when making feature selection, it is necessary to select as many functional features as possible that are important for the whole interaction network. When an incorrect feature was selected, the prediction results will be somewhat different from the actual function. Thus as a whole, the method proposed in this article has improved the accuracy of protein function prediction based on the PPI network method to a certain extent and reduces the probability of false positive prediction results.

2023-02-27 上传