概率图模型在机器学习中的应用解析

需积分: 10 16 下载量 138 浏览量 更新于2024-07-18 收藏 912KB PDF 举报
“机器学习与概率图模型 - 王立威 - 北京大学信息科学技术学院” 本PPT主要介绍了机器学习中的一个重要概念——概率图模型,并提供了对机器学习的一般性概述。由北京大学信息科学技术学院的王立威教授讲解,内容涵盖了机器学习的基本定义、概率图模型的表示、推理和学习等方面。 1. 机器学习简介: 机器学习是一种通过经验E提升任务T的性能P的方法。Tom Mitchell的定义强调了程序在经历E后,在T类任务上的性能(根据P度量)会得到提高。典型的机器学习任务包括分类、回归、排序和概率分布估计。 2. 机器学习任务: - **分类**:如垃圾邮件过滤、人脸识别等,旨在将数据分配到预定义的类别中。 - **回归**:如胡克定律、开普勒定律,预测连续变量的关系。 - **排名**:如搜索引擎,对结果进行排序以满足用户需求。 - **概率分布估计**:估计数据的概率分布模式。 3. 机器学习算法: - **分类**:支持向量机(SVM)、提升方法(Boosting)、随机森林(Random Forest)、袋装法(Bagging)以及(深度)神经网络。 - **回归**:套索回归(Lasso)和提升方法,用于预测连续数值。 4. 支持向量机(SVM): SVM是一种寻找最大间隔分类器的算法,通过最小化 hinge 损失函数并进行正则化来实现。它在许多机器学习问题中表现出色,尤其在小样本和高维空间中。 5. 提升方法(Boosting): Boosting是一种迭代算法,通过组合多个弱分类器形成一个强分类器。每个弱分类器试图改进前一轮的错误,从而实现隐含的大间隔分类。 概率图模型部分未在提供的内容中详细展开,但通常涉及如何用图形结构表示概率分布,以便进行推理和学习。这些模型包括贝叶斯网络、马尔科夫随机场(Markov Random Fields,MRF)和条件随机场(Conditional Random Fields,CRF)等。在机器学习中,概率图模型有助于处理不确定性,建模复杂的数据依赖关系,并进行有效的推断和参数学习。 总结来说,这个PPT深入浅出地介绍了机器学习的核心概念和典型算法,同时也引入了概率图模型这一重要工具,对于理解和应用机器学习有极大的帮助。
2018-07-03 上传
Statistical learning refers to a set of tools for modeling and understanding complex datasets. It is a recently developed area in statistics and blends with parallel developments in computer science and, in particular, machine learning. The field encompasses many methods such as the lasso and sparse regression, classification and regression trees, and boosting and support vector machines. With the explosion of “Big Data” problems, statistical learning has be- come a very hot field in many scientific areas as well as marketing, finance, and other business disciplines. People with statistical learning skills are in high demand. One of the first books in this area—The Elements of Statistical Learning (ESL) (Hastie, Tibshirani, and Friedman)—was published in 2001, with a second edition in 2009. ESL has become a popular text not only in statis- tics but also in related fields. One of the reasons for ESL’s popularity is its relatively accessible style. But ESL is intended for individuals with ad- vanced training in the mathematical sciences. An Introduction to Statistical Learning (ISL) arose from the perceived need for a broader and less tech- nical treatment of these topics. In this new book, we cover many of the same topics as ESL, but we concentrate more on the applications of the methods and less on the mathematical details. We have created labs illus- trating how to implement each of the statistical learning methods using the popular statistical software package R . These labs provide the reader with valuable hands-on experience.