Ubuntu 16.04下CUDA 10.1环境下Colmap编译与安装教程
171 浏览量
更新于2024-09-04
收藏 623KB PDF 举报
本篇教程详细介绍了如何在Ubuntu 16.04.6的联想Y7000笔记本上安装CUDA加速的Colmap版本,特别是针对使用NVIDIA 1050Ti显卡和显卡驱动版本430,以及CUDA 10.1环境的情况。由于预装的Colmap软件未包含CUDA支持,且后续需要使用Pycolmap库,因此作者建议从源代码级进行编译安装。
首先,作者强调了在安装过程中需避免使用Anaconda,因为可能会导致编译引用库时出现libtiff4_0引用失败等错误。如果已安装Anaconda,可以通过重命名文件夹或在Bash中移除Anaconda路径来解决这个问题,确保系统不会自动选择其内部库。
安装步骤分为两个部分:
1. 前期准备:
- 避免使用Anaconda:为了减少编译期间的冲突,推荐先卸载或重置Anaconda,以防其库影响Colmap的编译过程。
- 安装必要的基础依赖:
- git: 版本控制工具
- cmake: 构建系统
- boost系列库:提供额外的功能和性能
- Eigen3: 多线性代数库
- SuiteSparse:稀疏矩阵处理库
- FreeImage:图像处理库
- Google Glog和Gflags:日志和命令行标志处理
- GLew:OpenGL的轻量级封装
- Qt相关开发包:用于构建图形用户界面
1. 开始安装:
- 官方文档:作者参考了ceres库的官方安装教程,但指出在安装过程中遇到问题,可能需要对某些步骤进行调整。
- CUDA推荐:推荐使用CUDA至少版本7.x,尽管教程中未明确提及具体的CUDA版本,但10.1版本被提到了,说明至少高于7.x。
- 安装Ceres库:由于官方教程中的错误,可能需要寻找其他可靠的教程或社区解决方案来安装Ceres库,这一步骤是安装Colmap的关键依赖之一。
总结来说,这篇教程指导读者如何在特定硬件配置和操作系统环境下,通过规避特定问题并正确安装所需的依赖,来实现CUDA加速的Colmap从源代码级别的安装。这不仅涉及技术细节,如库的管理与版本兼容,还包含了实践经验,以帮助用户顺利解决实际安装过程中的问题。
2021-01-20 上传
点击了解资源详情
2023-03-16 上传
2023-03-16 上传
2023-07-28 上传
2023-06-09 上传
weixin_38722464
- 粉丝: 4
- 资源: 939
最新资源
- Aspose资源包:转PDF无水印学习工具
- Go语言控制台输入输出操作教程
- 红外遥控报警器原理及应用详解下载
- 控制卷筒纸侧面位置的先进装置技术解析
- 易语言加解密例程源码详解与实践
- SpringMVC客户管理系统:Hibernate与Bootstrap集成实践
- 深入理解JavaScript Set与WeakSet的使用
- 深入解析接收存储及发送装置的广播技术方法
- zyString模块1.0源码公开-易语言编程利器
- Android记分板UI设计:SimpleScoreboard的简洁与高效
- 量子网格列设置存储组件:开源解决方案
- 全面技术源码合集:CcVita Php Check v1.1
- 中军创易语言抢购软件:付款功能解析
- Python手动实现图像滤波教程
- MATLAB源代码实现基于DFT的量子传输分析
- 开源程序Hukoch.exe:简化食谱管理与导入功能