SMT8系统编程:从Web获取代码与寄存器操作指南

版权申诉
0 下载量 13 浏览量 更新于2024-10-05 收藏 202KB ZIP 举报
资源摘要信息:"这份资料提供了与smt8s003f3p6相关的一系列编程代码,这些代码涵盖了多个与微控制器系统相关的功能实现。文件通过压缩包的形式提供,其中包括了九个子文件夹,每个文件夹内包含了特定功能的代码实现。以下是针对每个文件夹内主题的详细解释: 1. Simple GPIO.zip:简单通用输入输出(GPIO)的实现代码。GPIO是微控制器中最基本的接口,可以通过编程控制引脚的高低电平状态,用于连接各种传感器、指示灯等外部设备。 2. Setting The System Clock.zip:系统时钟设置的代码。系统时钟是微控制器运行的核心,该代码展示了如何配置和管理系统时钟,包括时钟频率的设定以及不同时钟源的选择。 3. External Interrupts.zip:外部中断处理的代码。外部中断允许微控制器响应外部事件(如按钮按下、传感器信号变化等),及时处理相关任务。 4. UART.zip:通用异步接收/发送(UART)通信协议的实现代码。UART是串行通信中最常见的协议,用于微控制器与其它设备(如PC或其它微控制器)的数据交换。 5. PWM.zip:脉冲宽度调制(PWM)的代码实现。PWM广泛应用于电机速度控制、LED亮度调整等场景,通过调整脉冲宽度来实现模拟信号的输出。 6. Timer 1 Counting Modes.zip:计时器1的计数模式代码。计时器是微控制器中重要的功能模块,可用于实现精确的延时、计数以及外部事件的测量。 7. Single Pulse.zip:单脉冲信号生成的代码。单脉冲通常用于触发特定事件或进行测量操作。 8. Timer 2 20Hz Signal.zip:计时器2生成20Hz信号的代码。此功能常见于需要周期性信号的应用,如定时器或信号发生器。 9. ADC.zip:模数转换器(ADC)的代码实现。ADC允许微控制器将模拟信号转换为数字信号,以便于处理,常见的应用如读取温度传感器或光敏传感器的信号。 这些压缩包文件中的代码可能来源于其他网络资源,提供了不同的编程实现和使用场景,对于学习和理解smt8s003f3p6这颗微控制器的编程有重要的参考价值。通过分析这些代码,开发者可以深入理解各种功能模块的工作原理以及如何在实际应用中使用这些模块来实现特定的功能。" 注意:标题中的"The-Way-of-the-Register"可能指的是寄存器层面的操作方法,而描述中的"code for smt 8 it is from another web"表明代码可能来自互联网上的其他资源。标签中的"smt8s003f3p6"和"TheWeb registersmt"暗示这些代码是针对特定型号的微控制器(smt8s003f3p6)以及可能提供的特定网络平台或项目(TheWeb registersmt)设计的。

Recently, the renowned actor Zhang Songwen has sparked a fascinating phenomenon known as "two-way rejection", which has captured the attention of many and inspired the masses. The roots of this phenomenon are complex, with one of the fundamental causes being the fear of failure that plagues most of us. Rejection can instill a sense of inadequacy and a fear of being perceived as a failure, which can be challenging to overcome. However, the concept of "two-way rejection" teaches us that rejection is a natural part of life, and it's acceptable to reject and be rejected in return. This empowers us to recognize that life is not just about failures, but also about perseverance, and striving to achieve our aspirations, which may include fame and fortune. Despite the distractions we may encounter, the concept of "two-way rejection" reminds us to turn away from erroneous opportunities and remain steadfast in our principles and moral compass. While there are both advantages and drawbacks to this approach, "two-way rejection" ultimately inspires us to embrace rejection, learn from it, and emerge stronger and more self-assured. However, it is essential to distinguish between a sound and an unsound opportunity to avoid blindly rejecting the right ones. In conclusion, the concept of "two-way rejection" should be approached with discretion, but it can prove to be a valuable tool in enabling us to adhere to our goals and persevere through rejection. It teaches us to embrace rejection, learn from it, and move forward with confidence, ultimately empowering us to achieve our dreams and aspirations.结合双向拒绝进行内容补充

2023-05-10 上传

import numpy as np def sigmoid(x): # the sigmoid function return 1/(1+np.exp(-x)) class LogisticReg(object): def __init__(self, indim=1): # initialize the parameters with all zeros # w: shape of [d+1, 1] self.w = np.zeros((indim + 1, 1)) def set_param(self, weights, bias): # helper function to set the parameters # NOTE: you need to implement this to pass the autograde. # weights: vector of shape [d, ] # bias: scaler def get_param(self): # helper function to return the parameters # NOTE: you need to implement this to pass the autograde. # returns: # weights: vector of shape [d, ] # bias: scaler def compute_loss(self, X, t): # compute the loss # X: feature matrix of shape [N, d] # t: input label of shape [N, ] # NOTE: return the average of the log-likelihood, NOT the sum. # extend the input matrix # compute the loss and return the loss X_ext = np.concatenate((X, np.ones((X.shape[0], 1))), axis=1) # compute the log-likelihood def compute_grad(self, X, t): # X: feature matrix of shape [N, d] # grad: shape of [d, 1] # NOTE: return the average gradient, NOT the sum. def update(self, grad, lr=0.001): # update the weights # by the gradient descent rule def fit(self, X, t, lr=0.001, max_iters=1000, eps=1e-7): # implement the .fit() using the gradient descent method. # args: # X: input feature matrix of shape [N, d] # t: input label of shape [N, ] # lr: learning rate # max_iters: maximum number of iterations # eps: tolerance of the loss difference # TO NOTE: # extend the input features before fitting to it. # return the weight matrix of shape [indim+1, 1] def predict_prob(self, X): # implement the .predict_prob() using the parameters learned by .fit() # X: input feature matrix of shape [N, d] # NOTE: make sure you extend the feature matrix first, # the same way as what you did in .fit() method. # returns the prediction (likelihood) of shape [N, ] def predict(self, X, threshold=0.5): # implement the .predict() using the .predict_prob() method # X: input feature matrix of shape [N, d] # returns the prediction of shape [N, ], where each element is -1 or 1. # if the probability p>threshold, we determine t=1, otherwise t=-1

2023-07-22 上传