金融领域GBM模型的应用与股票走势分析

9 下载量 201 浏览量 更新于2024-09-03 1 收藏 646KB PDF 举报
几何布朗运动模型的分析与应用是一篇由蔡凯达、单玉隆和严定琪合作撰写的学术论文,发表在中国科技论文在线上。这篇首发论文主要探讨了随机微分方程(SDE)在各个领域的广泛应用,特别是SDE中的几何布朗运动(GBM)模型在金融领域的核心地位。GBM模型,因其在描述股票价格等金融资产随时间波动时的典型随机过程而广受欢迎。 SDE是一种描述随机系统随时间演化的方法,其在物理、力学、化学、生物学、经济学、金融学、控制理论以及航天工程等领域展现出了强大的预测和理解能力。在金融领域,GBM模型被广泛用于构建股价变动模型,它假设股票价格的变化遵循正态分布,且收益率是连续的和独立的,这使得它成为量化投资策略的基础工具之一。 论文的核心内容围绕着如何将SDE的GBM模型应用于实际股票价格数据的分析。作者首先介绍SDE的基本原理和GBM模型的具体形式,然后利用历史数据估计模型中的关键参数,如期望收益率和波动率。这些参数对于理解和预测股票价格未来走势至关重要。 通过对股票价格数据的拟合和分析,作者能够构建出理论上的股票价格路径,这对于投资者制定投资决策,如期权定价、风险管理等具有实践指导意义。此外,论文还可能涉及GBM模型的扩展和改进,例如考虑非线性因素或跳变过程,以提高模型的精确度。 关键词“金融数学”、“随机微分方程”和“GBM模型”揭示了论文的主要研究方向,强调了其在现代金融理论中的核心地位。这篇文章不仅提供了对几何布朗运动模型的深入理解,也展示了其在金融实践中的实用价值,对进一步研究和应用随机微分方程有着重要的参考价值。