坐标平移与位姿描述:齐次变换详解

需积分: 13 7 下载量 161 浏览量 更新于2024-08-20 收藏 4.32MB PPT 举报
本资源主要讨论了机器人运动学中的关键概念——坐标平移和位姿描述,以及齐次变换在其中的应用。首先,我们关注坐标平移,这是通过位置矢量来表示两个坐标系之间的相对位置,例如,坐标系{B}相对于坐标系{A}的平移可以通过向量来表示,这个向量决定了{B}坐标系的原点相对于{A}坐标系的位置。 在机器人运动学中,机器人通常被建模为一个开环关节链,由多个可以转动或移动的关节组成,这些关节连接形成一个操作臂。人们关心的是机器人末端执行器(工具)在空间中的位置和姿态,这涉及到了机器人的运动学问题,即研究关节变量如何影响末端执行器的运动轨迹。 位姿(Pose)是指刚体在空间中的位置(位置矢量)和方向(旋转矩阵)。对于刚体,有六个自由度,即三个平移(XYZ)和三个旋转(绕X、Y、Z轴)。位置可以用三维列向量在坐标系{A}中表示,而方位则通过旋转矩阵来描述,它是一个正交矩阵,反映了旋转的角度和旋转轴。 在位姿描述中,除了直接的旋转矩阵表示外,还有其他方法,如齐次变换法,这是一种将位置和旋转统一表示的方法,通过一个4x4的矩阵将两者结合。齐次变换矩阵包含了位置信息在前3行3列,旋转部分在后3行3列,最后一行全为1,用于保持整体的尺度不变性。 总结来说,本资源深入探讨了机器人运动学中如何通过坐标平移和位姿描述来理解机器人在空间中的行为,这对于机械臂设计、控制和路径规划等机器人技术至关重要。学习和掌握这些概念有助于开发者更好地理解和设计复杂的机器人系统。