基因表达式编程驱动的粗糙集属性约简算法:快速求解与局部最优避免
需积分: 5 162 浏览量
更新于2024-08-11
收藏 1.1MB PDF 举报
本篇文章主要探讨了"基于基因表达式编程的粗糙集属性约简研究"。粗糙集理论是数据挖掘领域的一个重要分支,关注的是如何在数据中识别并剔除不相关或非关键特征,以简化模型并提高预测性能。在这个背景下,作者提出了一种新颖的属性约简算法,利用基因表达式编程(Genetic Expression Programming, GEP)作为基础。
GEP是一种模拟自然选择和遗传机制的搜索算法,它通过构建和优化基因表达式来寻找最优解。在粗糙集属性约简中,GEP被用来构建一系列可能的属性子集组合,每个组合代表一个潜在的约简。通过反复迭代,GEP能够自适应地调整这些表达式,以找到具有最佳预测能力的属性子集,即最小约简。
文章的关键步骤包括:
1. **初始化**:通过随机生成一组候选属性子集,这些子集由不同的属性组成。
2. **编码与评估**:将每个子集转换为基因表达式,然后使用粗糙集的评价函数(如不确定度或信息增益)来评估每个子集的约简质量和预测性能。
3. **交叉与变异**:根据遗传算法原理,进行子集间的交叉和变异操作,以产生新的候选子集。
4. **选择**:保留性能较好的子集,淘汰性能较差的,这是一个迭代过程,直到满足停止条件(如达到预定的迭代次数或达到一定的精度阈值)。
5. **输出**:最终得到的最优属性子集即为约简结果,可以用于构建更简单的决策规则或模型。
实验部分展示了新算法与传统方法(如基于粗糙集的GA和直接搜索方法)的对比,结果显示基于GEP的属性约简方法具有更快的收敛速度,不容易陷入局部最优解,并能有效地找到最小约简。表格一展示了决策表实例,而表格二则提供了不同方法在实际应用中的性能比较,证明了提出的GEP方法的有效性和实用性。
总结来说,这篇2012年的论文提供了一种创新的粗糙集属性约简策略,通过基因表达式编程技术改进了粗糙集理论在数据压缩和特征选择方面的效率,对于提高机器学习模型的性能具有重要的理论和实践价值。
2019-07-22 上传
2021-05-24 上传
点击了解资源详情
点击了解资源详情
点击了解资源详情
点击了解资源详情
点击了解资源详情
点击了解资源详情
weixin_38728183
- 粉丝: 5
- 资源: 942
最新资源
- 高清艺术文字图标资源,PNG和ICO格式免费下载
- mui框架HTML5应用界面组件使用示例教程
- Vue.js开发利器:chrome-vue-devtools插件解析
- 掌握ElectronBrowserJS:打造跨平台电子应用
- 前端导师教程:构建与部署社交证明页面
- Java多线程与线程安全在断点续传中的实现
- 免Root一键卸载安卓预装应用教程
- 易语言实现高级表格滚动条完美控制技巧
- 超声波测距尺的源码实现
- 数据可视化与交互:构建易用的数据界面
- 实现Discourse外聘回复自动标记的简易插件
- 链表的头插法与尾插法实现及长度计算
- Playwright与Typescript及Mocha集成:自动化UI测试实践指南
- 128x128像素线性工具图标下载集合
- 易语言安装包程序增强版:智能导入与重复库过滤
- 利用AJAX与Spotify API在Google地图中探索世界音乐排行榜