没有合适的资源?快使用搜索试试~ 我知道了~
首页python中Matplotlib实现绘制3D图的示例代码
Matplotlib 也可以绘制 3D 图像,与二维图像不同的是,绘制三维图像主要通过 mplot3d 模块实现。但是,使用 Matplotlib 绘制三维图像实际上是在二维画布上展示,所以一般绘制三维图像时,同样需要载入 pyplot 模块。 mplot3d 模块下主要包含 4 个大类,分别是: mpl_toolkits.mplot3d.axes3d() mpl_toolkits.mplot3d.axis3d() mpl_toolkits.mplot3d.art3d() mpl_toolkits.mplot3d.proj3d() 其中,axes3d() 下面主要包含了各种实现
资源详情
资源评论
资源推荐

python中中Matplotlib实现绘制实现绘制3D图的示例代码图的示例代码
Matplotlib 也可以绘制 3D 图像,与二维图像不同的是,绘制三维图像主要通过 mplot3d 模块实现。但是,使用 Matplotlib 绘
制三维图像实际上是在二维画布上展示,所以一般绘制三维图像时,同样需要载入 pyplot 模块。
mplot3d 模块下主要包含 4 个大类,分别是:
mpl_toolkits.mplot3d.axes3d()
mpl_toolkits.mplot3d.axis3d()
mpl_toolkits.mplot3d.art3d()
mpl_toolkits.mplot3d.proj3d()
其中,axes3d() 下面主要包含了各种实现绘图的类和方法。axis3d() 主要是包含了和坐标轴相关的类和方法。art3d() 包含了
一些可将 2D 图像转换并用于 3D 绘制的类和方法。proj3d() 中包含一些零碎的类和方法,例如计算三维向量长度等。
一般情况下,我们用到最多的就是 mpl_toolkits.mplot3d.axes3d() 中的mpl_toolkits.mplot3d.axes3d.Axes3D() 类,而
Axes3D() 下面又存在绘制不同类型 3D 图的方法。你可以通过下面的方式导入 Axes3D()。
from mpl_toolkits.mplot3d.axes3d import Axes3D或from mpl_toolkits.mplot3d import Axes3D
三维散点图三维散点图
首先,我们导入 numpy 随机生成一组数据。
import numpy as np
# x, y, z 均为 0 到 1 之间的 100 个随机数
x = np.random.normal(0, 1, 100)
y = np.random.normal(0, 1, 100)
z = np.random.normal(0, 1, 100)
接下来,开始绘图。第一步是载入 2D, 3D 绘图模块。
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
第二步,使用 Axes3D() 创建 3D 图形对象。
fig = plt.figure()
ax = Axes3D(fig)
最后,调用散点图绘制方法绘图并显示出来。
ax.scatter(x, y, z)
plt.show()
三维线型图三维线型图
线形图和散点图相似,需要传入 x, y, z 三个坐标的数值。详细的代码如下。
# 载入模块
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np
# 生成数据
x = np.linspace(-6 * np.pi, 6 * np.pi, 1000)
y = np.sin(x)
z = np.cos(x)
# 创建 3D 图形对象
fig = plt.figure()
ax = Axes3D(fig)
# 绘制线型图
ax.plot(x, y, z)
# 显示图
plt.show()


















安全验证
文档复制为VIP权益,开通VIP直接复制

评论0