没有合适的资源?快使用搜索试试~ 我知道了~
首页纯python实现机器学习之kNN算法示例
前面文章分别简单介绍了线性回归,逻辑回归,贝叶斯分类,并且用python简单实现。这篇文章介绍更简单的 knn, k-近邻算法(kNN,k-NearestNeighbor)。 k-近邻算法(kNN,k-NearestNeighbor),是最简单的机器学习分类算法之一,其核心思想在于用距离目标最近的k个样本数据的分类来代表目标的分类(这k个样本数据和目标数据最为相似)。 原理 kNN算法的核心思想是用距离最近(多种衡量距离的方式)的k个样本数据来代表目标数据的分类。 具体讲,存在训练样本集, 每个样本都包含数据特征和所属分类值。 输入新的数据,将该数据和训练样本集汇中每一个样本比较,找
资源详情
资源评论
资源推荐

纯纯python实现机器学习之实现机器学习之kNN算法示例算法示例
前面文章分别简单介绍了线性回归,逻辑回归,贝叶斯分类,并且用python简单实现。这篇文章介绍更简单的 knn, k-近邻算
法(kNN,k-NearestNeighbor)。
k-近邻算法(kNN,k-NearestNeighbor),是最简单的机器学习分类算法之一,其核心思想在于用距离目标最近的k个样本数
据的分类来代表目标的分类(这k个样本数据和目标数据最为相似)。
原理原理
kNN算法的核心思想是用距离最近(多种衡量距离的方式)的k个样本数据来代表目标数据的分类。
具体讲,存在训练样本集, 每个样本都包含数据特征和所属分类值。
输入新的数据,将该数据和训练样本集汇中每一个样本比较,找到距离最近的k个,在k个数据中,出现次数做多的那个分类,
即可作为新数据的分类。
如上图:
需要判断绿色是什么形状。当k等于3时,属于三角。当k等于5是,属于方形。
因此该方法具有一下特点:
监督学习:训练样本集中含有分类信息
算法简单, 易于理解实现
结果收到k值的影响,k一般不超过20.
计算量大,需要计算与样本集中每个样本的距离。
训练样本集不平衡导致结果不准确问题
接下来用oython 做个简单实现, 并且尝试用于约会网站配对。
python简单实现
def classify(inX, dataSet, labels, k):
"""
定义knn算法分类器函数
:param inX: 测试数据
:param dataSet: 训练数据
:param labels: 分类类别
:param k: k值
:return: 所属分类
"""
dataSetSize = dataSet.shape[0] #shape(m, n)m列n个特征
diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet
sqDiffMat = diffMat ** 2

















安全验证
文档复制为VIP权益,开通VIP直接复制

评论0