没有合适的资源?快使用搜索试试~ 我知道了~
首页将Pytorch模型从CPU转换成GPU的实现方法
最近将Pytorch程序迁移到GPU上去的一些工作和思考 环境:Ubuntu 16.04.3 Python版本:3.5.2 Pytorch版本:0.4.0 0. 序言 大家知道,在深度学习中使用GPU来对模型进行训练是可以通过并行化其计算来提高运行效率,这里就不多谈了。 最近申请到了实验室的服务器来跑程序,成功将我简陋的程序改成了“高大上”GPU版本。 看到网上总体来说少了很多介绍,这里决定将我的一些思考和工作记录下来。 1. 如何进行迁移 由于我使用的是Pytorch写的模型,网上给出了一个非常简单的转换方式: 对模型和相应的数据进行.cuda()处理。通过这种方式,我们就可以将内存中的数据
资源详情
资源评论
资源推荐

将将Pytorch模型从模型从CPU转换成转换成GPU的实现方法的实现方法
最近将Pytorch程序迁移到GPU上去的一些工作和思考
环境:Ubuntu 16.04.3
Python版本:3.5.2
Pytorch版本:0.4.0
0. 序言序言
大家知道,在深度学习中使用GPU来对模型进行训练是可以通过并行化其计算来提高运行效率,这里就不多谈了。
最近申请到了实验室的服务器来跑程序,成功将我简陋的程序改成了“高大上”GPU版本。
看到网上总体来说少了很多介绍,这里决定将我的一些思考和工作记录下来。
1. 如何进行迁移如何进行迁移
由于我使用的是Pytorch写的模型,网上给出了一个非常简单的转换方式: 对模型和相应的数据进行.cuda()处理。通过这种方
式,我们就可以将内存中的数据复制到GPU的显存中去。从而可以通过GPU来进行运算了。
网上说的非常简单,但是实际使用过程中还是遇到了一些疑惑。下面分数据和模型两方面的迁移来进行说明介绍。
1.1 判定使用判定使用GPU
下载了对应的GPU版本的Pytorch之后,要确保GPU是可以进行使用的,通过torch.cuda.is_available()的返回值来进行判断。
返回True则具有能够使用的GPU。
通过torch.cuda.device_count()可以获得能够使用的GPU数量。其他就不多赘述了。
常常通过如下判定来写可以跑在GPU和CPU上的通用模型:
if torch.cuda.is_available():
ten1 = ten1.cuda()
MyModel = MyModel.cuda()
2. 对应数据的迁移对应数据的迁移
数据方面常用的主要是两种 —— Tensor和Variable。实际上这两种类型是同一个东西,因为Variable实际上只是一个容器,这
里先视其不同。
2.1 将将Tensor迁移到显存中去迁移到显存中去
不论是什么类型的Tensor(FloatTensor或者是LongTensor等等),一律直接使用方法.cuda()即可。
例如:
ten1 = torch.FloatTensor(2)
>>>> 6.1101e+24
4.5659e-41
[torch.FloatTensor of size 2]
ten1_cuda = ten1.cuda()
>>>> 6.1101e+24
4.5659e-41
[torch.cuda.FloatTensor of size 2 (GPU 0)]
其数据类型会由torch.FloatTensor变为torch.cuda.FloatTensor (GPU 0)这样代表这个数据现在存储在
GPU 0的显存中了。
如果要将显存中的数据复制到内存中,则对cuda数据类型使用.cpu()方法即可。
2.2 将将Variable迁移到显存中去迁移到显存中去
在模型中,我们最常使用的是Variable这个容器来装载使用数据。主要是由于Variable可以进行反向传播来进行自动求导。
同样地,要将Variable迁移到显存中,同样只需要使用.cuda()即可实现。
这里有一个小疑问,对Variable直接使用.cuda和对Tensor进行.cuda然后再放置到Variable中结果是否一致呢。答案是肯定











安全验证
文档复制为VIP权益,开通VIP直接复制

评论0