没有合适的资源?快使用搜索试试~ 我知道了~
首页PDF资料:高速差分ADC驱动器设计指南
PDF资料:高速差分ADC驱动器设计指南
187 浏览量
更新于2023-05-24
评论 1
收藏 73KB PDF 举报
引言 大多数现代高性能ADC使用差分输入抑制共模噪声和干扰。由于采用了平衡的信号处理方式,这种方法能将动态范围提高2倍,进而改善系统总体性能。虽然差分输入型ADC也能接受单端输入信号,但只有在输入差分信号时才能获得ADC性能。ADC驱动器专门设计用于提供这种差分信号的电路——可以完成许多重要的功能,包括幅度调整、单端到差分转换、缓冲、共模偏置调整和滤波等。自从推出AD8138,1以后,差分ADC驱动器已经成为数据采集系统中不可或缺的信号调理元件。 图1:差分放大器。 图1是一种基本的完全差分电压反馈型ADC驱动器。这个图与传统运放的反馈电路有两点区别:差分ADC驱动器有一个额
资源详情
资源评论
资源推荐

PDF资料:高速差分资料:高速差分ADC驱动器设计指南驱动器设计指南
引言 大多数现代高性能ADC使用差分输入抑制共模噪声和干扰。由于采用了平衡的信号处理方式,这种方
法能将动态范围提高2倍,进而改善系统总体性能。虽然差分输入型ADC也能接受单端输入信号,但只有在输入
差分信号时才能获得ADC性能。ADC驱动器专门设计用于提供这种差分信号的电路——可以完成许多重要的功
能,包括幅度调整、单端到差分转换、缓冲、共模偏置调整和滤波等。自从推出AD8138,1以后,差分ADC驱动
器已经成为数据采集系统中不可或缺的信号调理元件。 图1:差分放大器。 图1是一种基本的完全差分电压
反馈型ADC驱动器。这个图与传统运放的反馈电路有两点区别:差分ADC驱动器有一个额
引言引言
大多数现代高性能ADC使用差分输入抑制共模噪声和干扰。由于采用了平衡的信号处理方式,这种方法能将动态范围提
高2倍,进而改善系统总体性能。虽然差分输入型ADC也能接受单端输入信号,但只有在输入差分信号时才能获得ADC性能。
ADC驱动器专门设计用于提供这种差分信号的电路——可以完成许多重要的功能,包括幅度调整、单端到差分转换、缓冲、
共模偏置调整和滤波等。自从推出AD8138,1以后,差分ADC驱动器已经成为数据采集系统中不可或缺的信号调理元件。
图1:差分放大器。
图1是一种基本的完全差分电压反馈型ADC驱动器。这个图与传统运放的反馈电路有两点区别:差分ADC驱动器有一个额
外的输出端(VON)和一个额外的输入端(VOCM)。当驱动器与差分输入型ADC连接时,这些输入输出端可以提供很大的灵活
性。
与单端输出相反,差分ADC驱动器产生平衡的差分输出信号——相对于VOCM——在VOP与VON之间。这里的P指的是
正,N指的是负。VOCM输入信号控制输出共模电压。只要输入与输出信号处于规定范围内,输出共模电压必定等于VOCM输
入端的电压。负反馈和高开环增益致使放大器输入端的电压VA+和VA-实质上相等。
为了便于后面的讨论,需要明确一些定义。如果输入信号是平衡信号,那么VIP和VIN相对于某个公共参考电压的幅度应
该是相等的,相位则相反。当输入信号是单端信号时,一个输入端是固定电压,另一个输入端的电压相对这个输入端变化。无
论是哪种情况,输入信号都被定义为VIP–VIN。
差模输入电压VIN, dm和共模输入电压VIN, cm的定义见公式1和公式2。
点击文PDF:
:

















安全验证
文档复制为VIP权益,开通VIP直接复制

评论0