没有合适的资源?快使用搜索试试~ 我知道了~
首页对python实现二维函数高次拟合的示例详解
资源详情
资源评论
资源推荐

对对python实现二维函数高次拟合的示例详解实现二维函数高次拟合的示例详解
今天小编就为大家分享一篇对python实现二维函数高次拟合的示例详解,具有很好的参考价值,希望对大家有
所帮助。一起跟随小编过来看看吧
在参加“数据挖掘”比赛中遇到了关于函数高次拟合的问题,然后就整理了一下源码,以便后期的学习与改进。
在本次“数据挖掘”比赛中感觉收获最大的还是对于神经网络的认识,在接近一周的时间里,研究了进40种神经网络模型,虽然
在持续一周的挖掘比赛把自己折磨的惨不忍睹,但是收获颇丰。现在想想也挺欣慰自己在这段时间里接受新知识的能力。关于
神经网络方面的理解会在后续博文中补充(刚提交完论文,还没来得及整理),先分享一下高次拟合方面的知识。
# coding=utf-8
import matplotlib.pyplot as plt
import numpy as np
import scipy as sp
import csv
from scipy.stats import norm
from sklearn.pipeline import Pipeline
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
from sklearn import linear_model
''''' 数据导入 '''
def loadDataSet(fileName):
dataMat = []
labelMat = []
csvfile = file(fileName, 'rb')
reader = csv.reader(csvfile)
b = 0
for line in reader:
if line[50] is '':
b += 1
else:
dataMat.append(float(line[41])/100*20+30)
labelMat.append(float(line[25])*100)
csvfile.close()
print "absence time number: %d" % b
return dataMat,labelMat
xArr,yArr = loadDataSet('data.csv')
x = np.array(xArr)
y = np.array(yArr)
# x = np.arange(0, 1, 0.002)
# y = norm.rvs(0, size=500, scale=0.1)
# y = y + x ** 2
def rmse(y_test, y):
return sp.sqrt(sp.mean((y_test - y) ** 2))
def R2(y_test, y_true):
return 1 - ((y_test - y_true) ** 2).sum() / ((y_true - y_true.mean()) ** 2).sum()
def R22(y_test, y_true):
y_mean = np.array(y_true)
y_mean[:] = y_mean.mean()
return 1 - rmse(y_test, y_true) / rmse(y_mean, y_true)
plt.scatter(x, y, s=5)
#分别进行1,2,3,6次拟合
degree = [1, 2,3, 6]
y_test = []
y_test = np.array(y_test)
for d in degree:
#普通
# clf = Pipeline([('poly', PolynomialFeatures(degree=d)),
# ('linear', LinearRegression(fit_intercept=False))])
# clf.fit(x[:, np.newaxis], y)
# 岭回归
clf = Pipeline([('poly', PolynomialFeatures(degree=d)),
('linear', linear_model.Ridge())])
clf.fit(x[:, np.newaxis], y)
y_test = clf.predict(x[:, np.newaxis])











安全验证
文档复制为VIP权益,开通VIP直接复制

评论0