没有合适的资源?快使用搜索试试~ 我知道了~
首页Pytorch中index_select() 函数的实现理解
Pytorch中index_select() 函数的实现理解
1.7k 浏览量
更新于2023-05-27
评论
收藏 40KB PDF 举报
主要介绍了Pytorch中index_select() 函数的实现理解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
资源详情
资源评论
资源推荐

Pytorch中中index_select() 函数的实现理解函数的实现理解
主要介绍了Pytorch中index_select() 函数的实现理解,文中通过示例代码介绍的非常详细,对大家的学习或者工
作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
函数形式:
index_select(
dim,
index
)
参数:
dim:表示从第几维挑选数据,类型为int值;
index:表示从第一个参数维度中的哪个位置挑选数据,类型为torch.Tensor类的实例;
刚开始学习pytorch,遇到了index_select(),一开始不太明白几个参数的意思,后来查了一下资料,算是明白了一点。
a = torch.linspace(1, 12, steps=12).view(3, 4)
print(a)
b = torch.index_select(a, 0, torch.tensor([0, 2]))
print(b)
print(a.index_select(0, torch.tensor([0, 2])))
c = torch.index_select(a, 1, torch.tensor([1, 3]))
print(c)
先定义了一个tensor,这里用到了linspace和view方法。
第一个参数是索引的对象,第二个参数0表示按行索引,1表示按列进行索引,第三个参数是一个tensor,就是索引的序号,比
如b里面tensor[0, 2]表示第0行和第2行,c里面tensor[1, 3]表示第1列和第3列。
输出结果如下:
tensor([[ 1., 2., 3., 4.],
[ 5., 6., 7., 8.],
[ 9., 10., 11., 12.]])
tensor([[ 1., 2., 3., 4.],
[ 9., 10., 11., 12.]])
tensor([[ 1., 2., 3., 4.],
[ 9., 10., 11., 12.]])
tensor([[ 2., 4.],
[ 6., 8.],
[10., 12.]])
功能:从张量的某个维度的指定位置选取数据。功能:从张量的某个维度的指定位置选取数据。
代码实例:
t = torch.arange(24).reshape(2, 3, 4) # 初始化一个tensor,从0到23,形状为(2,3,4)
print("t--->", t)
index = torch.tensor([1, 2]) # 要选取数据的位置
print("index--->", index)
data1 = t.index_select(1, index) # 第一个参数:从第1维挑选, 第二个参数:从该维中挑选的位置
print("data1--->", data1)
data2 = t.index_select(2, index) # 第一个参数:从第2维挑选, 第二个参数:从该维中挑选的位置
print("data2--->", data2)
运行结果:
t---> tensor([[[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]],
[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])
index---> tensor([1, 2])



















weixin_38721119
- 粉丝: 10
- 资源: 925
上传资源 快速赚钱
我的内容管理 收起
我的资源 快来上传第一个资源
我的收益
登录查看自己的收益我的积分 登录查看自己的积分
我的C币 登录后查看C币余额
我的收藏
我的下载
下载帮助

会员权益专享
安全验证
文档复制为VIP权益,开通VIP直接复制

评论0