收缩临界κ连通图中低度顶点的研究

0 下载量 38 浏览量 更新于2024-09-04 收藏 368KB PDF 举报
"The Vertices of Lower Degree in Contraction-Critical κ Connected Graphs" 这篇论文主要研究的是图论中的一个特定概念——收缩临界κ连通图。在图论中,一个图G被认为是κ连通的,如果从图G中删除任意κ-1个顶点后,剩下的图仍然是连通的。而“收缩临界”指的是经过一次或多次顶点收缩操作(将两个相邻的顶点合并为一个顶点)后,图的连通性会降低的情况。 作者袁旭东、李婷婷和苏建基来自广西师范大学数学系。他们关注的问题是收缩临界κ连通图中度数较低的顶点。已知的一个结果是,对于这样的图G,其最小度数不超过$\lfloor\frac{5\kappa}{4}\rfloor - 1$,这个结论在《图论与组合》期刊1991年的一篇文章中有提及。 在这篇论文中,作者进一步探讨了当图G中最多只有一个度数为κ的顶点时的情况。他们证明了在这种情况下,G不可能存在一对相邻的顶点,使得这两个顶点的度数都小于等于$\lfloor\frac{5\kappa}{4}\rfloor - 1$。或者,如果存在一个度数为κ的顶点,其邻域内必须有一个顶点的度数小于等于$\lfloor\frac{4\kappa}{3}\rfloor - 1$。 此外,他们还解决了苏建基之前提出的一个猜想。当图G的最小度数等于$\lfloor\frac{5\kappa}{4}\rfloor - 1$,并且κ能被4整除时,G应该有κ个度数为$\lfloor\frac{5\kappa}{4}\rfloor - 1$的顶点。他们证实了这个猜想是正确的,并且指出G还有$\frac{3\kappa}{2}$个具有同样度数的顶点。 关键词包括:收缩临界图、片段(Fragment)、N(B)-片段。 1. 引言 文章的引言部分通常会简要介绍图论的基础知识,比如定义了图的基本元素(顶点集V和边集E),并概述了研究背景和目标。它可能还会提到前人在这方面的工作以及尚未解决的问题,从而引出本文的研究内容。 这篇论文深入探讨了收缩临界κ连通图的性质,特别是关于这些图中低度数顶点的分布和交互关系,这对理解图的连通性和结构有着重要的理论价值。这些发现对于图的理论研究,如图的剪枝、连通性分析和算法设计等方面,都有实际的应用意义。
2023-06-12 上传
2023-05-29 上传

(a) We can model this problem as a bipartite graph where one set of vertices represents the customers and the other set represents the representatives. We draw an edge between a customer and a representative only if the representative is qualified to serve that customer. Then, we can use the Hopcroft-Karp algorithm to find a maximum matching in this bipartite graph. If the size of the maximum matching is n, then all customers can be served simultaneously by a qualified representative. We can assign each customer the representative they are matched with. (b) To check whether a representative r can serve the VIP customer while the other n-1 customers can be served by qualified representatives, we first remove all edges incident to r from the bipartite graph. Then, we check whether the remaining subgraph has a matching that covers all customers except the VIP customer. If such a matching exists, then r can serve the VIP customer while the other n-1 customers can be served by qualified representatives. Otherwise, r cannot serve the VIP customer without affecting the capacity to serve the other customers. To implement this algorithm, we can modify the Hopcroft-Karp algorithm as follows. We start by removing all edges incident to r and finding a maximum matching in the remaining subgraph. If the size of the maximum matching is less than n-1, then r cannot serve the VIP customer. Otherwise, we add the VIP customer to the matching and check whether the resulting matching covers all customers. If it does, then r can serve the VIP customer while the other n-1 customers can be served by qualified representatives. Otherwise, r cannot serve the VIP customer without affecting the capacity to serve the other customers. The time complexity of this algorithm is O(n^3), since we need to run the Hopcroft-Karp algorithm twice, once on the original bipartite graph and once on the subgraph with edges incident to r removed.翻译

2023-05-22 上传