收缩临界κ连通图中低度顶点的研究
38 浏览量
更新于2024-09-04
收藏 368KB PDF 举报
"The Vertices of Lower Degree in Contraction-Critical κ Connected Graphs"
这篇论文主要研究的是图论中的一个特定概念——收缩临界κ连通图。在图论中,一个图G被认为是κ连通的,如果从图G中删除任意κ-1个顶点后,剩下的图仍然是连通的。而“收缩临界”指的是经过一次或多次顶点收缩操作(将两个相邻的顶点合并为一个顶点)后,图的连通性会降低的情况。
作者袁旭东、李婷婷和苏建基来自广西师范大学数学系。他们关注的问题是收缩临界κ连通图中度数较低的顶点。已知的一个结果是,对于这样的图G,其最小度数不超过$\lfloor\frac{5\kappa}{4}\rfloor - 1$,这个结论在《图论与组合》期刊1991年的一篇文章中有提及。
在这篇论文中,作者进一步探讨了当图G中最多只有一个度数为κ的顶点时的情况。他们证明了在这种情况下,G不可能存在一对相邻的顶点,使得这两个顶点的度数都小于等于$\lfloor\frac{5\kappa}{4}\rfloor - 1$。或者,如果存在一个度数为κ的顶点,其邻域内必须有一个顶点的度数小于等于$\lfloor\frac{4\kappa}{3}\rfloor - 1$。
此外,他们还解决了苏建基之前提出的一个猜想。当图G的最小度数等于$\lfloor\frac{5\kappa}{4}\rfloor - 1$,并且κ能被4整除时,G应该有κ个度数为$\lfloor\frac{5\kappa}{4}\rfloor - 1$的顶点。他们证实了这个猜想是正确的,并且指出G还有$\frac{3\kappa}{2}$个具有同样度数的顶点。
关键词包括:收缩临界图、片段(Fragment)、N(B)-片段。
1. 引言
文章的引言部分通常会简要介绍图论的基础知识,比如定义了图的基本元素(顶点集V和边集E),并概述了研究背景和目标。它可能还会提到前人在这方面的工作以及尚未解决的问题,从而引出本文的研究内容。
这篇论文深入探讨了收缩临界κ连通图的性质,特别是关于这些图中低度数顶点的分布和交互关系,这对理解图的连通性和结构有着重要的理论价值。这些发现对于图的理论研究,如图的剪枝、连通性分析和算法设计等方面,都有实际的应用意义。
2018-10-16 上传
2021-04-22 上传
2023-02-06 上传
2023-06-12 上传
2021-02-09 上传
2024-07-03 上传
2023-04-28 上传
2023-11-21 上传
2023-05-29 上传
2023-05-22 上传
weixin_38670318
- 粉丝: 6
- 资源: 919
最新资源
- Angular实现MarcHayek简历展示应用教程
- Crossbow Spot最新更新 - 获取Chrome扩展新闻
- 量子管道网络优化与Python实现
- Debian系统中APT缓存维护工具的使用方法与实践
- Python模块AccessControl的Windows64位安装文件介绍
- 掌握最新*** Fisher资讯,使用Google Chrome扩展
- Ember应用程序开发流程与环境配置指南
- EZPCOpenSDK_v5.1.2_build***版本更新详情
- Postcode-Finder:利用JavaScript和Google Geocode API实现
- AWS商业交易监控器:航线行为分析与营销策略制定
- AccessControl-4.0b6压缩包详细使用教程
- Python编程实践与技巧汇总
- 使用Sikuli和Python打造颜色求解器项目
- .Net基础视频教程:掌握GDI绘图技术
- 深入理解数据结构与JavaScript实践项目
- 双子座在线裁判系统:提高编程竞赛效率