深度学习笔记:CNN卷积神经网络解析
需积分: 9 197 浏览量
更新于2024-09-10
收藏 212KB DOCX 举报
"CNN简单笔记"
在深度学习领域,卷积神经网络(CNN)是一种非常重要的模型,尤其在图像处理和计算机视觉任务中表现卓越。CNN的设计灵感来自于生物视觉系统,其核心在于通过滤波器(filter)来检测图像中的特征。
CNN的结构通常包括输入层、卷积层(CONV)、激励层(如ReLU)、池化层(POOL)以及全连接层(FC)。在这些组件中,卷积层是CNN的核心,它负责提取图像的特征。滤波器是一组固定权重的神经元,通过在输入数据上进行卷积操作来识别图像的模式。
卷积操作本质上是对输入数据与滤波器进行内积计算。假设输入数据是一个二维矩阵,滤波器也对应一个小型的二维矩阵,它们按预设的步长(stride)在输入数据上移动,逐个计算内积并累加,形成一个输出值。这一过程在深度方向上重复,形成了多通道输出,即输出的深度(depth)。深度决定了输出特征的数量,同时也代表了使用了多少个不同的滤波器。
滤波器在图像上滑动时,为了保持输出特征图的尺寸稳定,可能会使用填充(padding)。填充是在输入数据边缘添加一圈零值,使得每次滤波器移动后,覆盖的数据区域仍然相同。这样可以确保即使在滤波器大小不等于输入数据尺寸时,输出特征图的尺寸也可以被精确控制。
激活函数在CNN中起到引入非线性的作用,常见的有sigmoid、tanh和ReLU。sigmoid和tanh常用于全连接层,它们将输出压缩到一个有限的区间,有助于梯度的传播。然而,sigmoid在接近饱和区时容易出现梯度消失的问题,而tanh的平均输出为0,可能对模型初始化有利。相比之下,ReLU函数在负区直接输出0,正区保持原值,它的线性性质避免了梯度消失问题,且计算效率更高,因此在卷积层中更常用。
CNN的池化层则用于降低特征图的空间维度,减少计算量的同时保持重要特征。常见的池化方式有最大池化和平均池化,前者保留每个区域的最大特征值,后者取平均值,有助于模型的鲁棒性。
最后,全连接层将卷积层和池化层提取的特征与分类任务联系起来,通常用于实现最终的分类或回归。在全连接层中,所有输入节点都与每个输出节点相连,形成密集的连接。
CNN通过卷积、激励、池化和全连接等操作,从原始图像中逐级抽取高级特征,逐步实现对图像内容的理解。这种层次化的特征提取机制是CNN在图像识别等领域取得成功的关键。
2016-11-07 上传
点击了解资源详情
2023-01-08 上传
2021-02-18 上传
2021-02-24 上传
2021-01-20 上传
点击了解资源详情
点击了解资源详情
2023-05-03 上传
flower???
- 粉丝: 0
- 资源: 1
最新资源
- MATLAB实现小波阈值去噪:Visushrink硬软算法对比
- 易语言实现画板图像缩放功能教程
- 大模型推荐系统: 优化算法与模型压缩技术
- Stancy: 静态文件驱动的简单RESTful API与前端框架集成
- 掌握Java全文搜索:深入Apache Lucene开源系统
- 19计应19田超的Python7-1试题整理
- 易语言实现多线程网络时间同步源码解析
- 人工智能大模型学习与实践指南
- 掌握Markdown:从基础到高级技巧解析
- JS-PizzaStore: JS应用程序模拟披萨递送服务
- CAMV开源XML编辑器:编辑、验证、设计及架构工具集
- 医学免疫学情景化自动生成考题系统
- 易语言实现多语言界面编程教程
- MATLAB实现16种回归算法在数据挖掘中的应用
- ***内容构建指南:深入HTML与LaTeX
- Python实现维基百科“历史上的今天”数据抓取教程