概率论与数理统计笔记概览:事件、随机变量与数字特征

需积分: 0 0 下载量 156 浏览量 更新于2024-06-24 收藏 967KB PDF 举报
本资源是一份详细的概率论与数理统计笔记,由作者"恰冷饭菌"于2020年11月21日编撰。笔记分为三个主要章节,全面介绍了概率论的基础概念和核心理论。 **第一章:事件与概率** 1.1 部分讲述了随机试验与随机事件,包括它们的定义和基本运算。概率的定义及性质是这一节的重点,强调了概率的度量性质,如非负性和概率和为1等。 1.2 计数原理涉及排列组合和多组组合的概念,为后续概率计算提供基础。几何概型部分介绍了在几何结构中的概率求解方法,例如抛掷硬币或投掷骰子等简单实验。 1.3 条件概率部分深入探讨了全概率公式和Bayes公式,前者用于根据所有可能的结果计算一个事件的概率,后者则是基于已知部分信息更新概率的工具。此外,还讨论了事件独立性的概念,这是概率论中的重要原理。 **第二章:随机变量及其分布** 这一章是核心内容,涵盖了离散型和连续型随机变量的定义与常见分布。0-1分布、二项分布、Poisson分布、几何分布、Pascal分布以及离散均匀分布等都是离散型随机变量的例子。连续随机变量则介绍了均匀分布、指数分布、正态分布(高斯分布)、Laplace分布和Γ分布。 2.4 随机向量部分解释了离散和连续型随机向量的概念,以及它们的联合分布和边缘分布(边际分布)的概念。条件分布和随机变量独立性也是本章的重要组成部分。 **第三章:数字特征** 这一章着重于描述随机变量的集中趋势和离散程度。中心特征如均值(期望)和数学期望的性质、中位数、众数被详细介绍。方差、标准差和矩是衡量数据波动性的关键指标,而协方差和相关系数则揭示了变量之间的关系强度。其他数字特征,如平均绝对差、生成函数、矩母函数和特征函数,提供了进一步的数据分析工具,特别是偏度系数,它用于衡量数据分布的不对称性。 综上,这份笔记提供了一个系统的学习框架,适合想要深入了解概率论和数理统计的读者,无论是作为学术研究的参考资料,还是作为教学辅助材料,都是非常有价值的资源。
2024-09-05 上传
,发送类别,概率,以及物体在相机坐标系下的xyz.zip目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
2024-09-05 上传
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
2024-09-05 上传
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行