Python实现AS2805协议详解

需积分: 9 0 下载量 106 浏览量 更新于2024-11-25 收藏 253KB ZIP 举报
资源摘要信息:"AS2805标准是金融服务消息交换的标准之一,它详细规定了金融机构之间如何通过电子方式交换信息。AS2805通常用于银行间的支付消息交换,例如转账和支付清算。该标准定义了特定的数据格式、消息类型和交换协议,以确保不同机构之间能够准确无误地交换关键财务信息。 Python作为一种广泛使用的高级编程语言,因其简洁易读和强大的库支持,在实现各种技术解决方案方面表现突出。AS2805_Python_Implementation表明,有开发者采用了Python语言来实现AS2805标准。这意味着他们可能开发了一个库或框架,用于帮助银行和其他金融机构能够按照AS2805标准,通过Python语言来创建、发送和解析财务交易消息。 在金融行业,交易处理需要严格遵守各种规定,以确保交易的合法性和正确性。AS2805的Python实现为开发者提供了一种便捷的方式,通过编程直接集成到现有的银行系统中。这将有助于自动化处理流程,并可能提高处理效率,减少人为错误。它还可以通过编写自定义代码,来适配特定的业务需求或与其他系统集成。 Python实现AS2805标准的项目可能包含以下内容: 1. 数据模型:实现了AS2805标准中定义的数据结构,使得用户能够轻松地创建符合标准的数据对象。 2. 编码器和解码器:用于将Python数据对象转换成符合AS2805标准的消息格式,反之亦然。 3. 校验机制:确保消息在发送前符合所有AS2805规定的要求,如语法校验、数据完整性校验等。 4. 传输协议处理:实现AS2805标准中规定的交换协议,可能包括通信协议的底层细节,如TCP/IP、HTTP或其它。 5. 示例代码:提供示例脚本,演示如何使用Python实现的AS2805库来发送和接收AS2805格式的消息。 6. 文档和说明:详细说明如何使用这个Python库,可能包括安装指南、API文档和最佳实践建议。 7. 错误处理:定义了一套错误处理机制,能够处理不符合标准的消息,或者在消息传递过程中遇到的各种异常情况。 通过这个项目,金融机构的IT团队可以利用Python的易用性和灵活性来快速实现AS2805标准,无需从头开始编写复杂的通信和数据处理逻辑。这可能会加速项目的开发周期,减少开发成本,并且由于广泛使用Python,还可能降低维护和扩展系统的难度。"

D:\anaconda\envs\pytorch\python.exe C:\Users\23896\Desktop\bev-lane-det_dachaung-master\tools\train_openlane.py Traceback (most recent call last): File "C:\Users\23896\Desktop\bev-lane-det_dachaung-master\tools\train_openlane.py", line 18, in <module> from torch.utils.tensorboard import SummaryWriter File "D:\anaconda\envs\pytorch\lib\site-packages\torch\utils\tensorboard\__init__.py", line 13, in <module> from .writer import FileWriter, SummaryWriter # noqa: F401 File "D:\anaconda\envs\pytorch\lib\site-packages\torch\utils\tensorboard\writer.py", line 9, in <module> from tensorboard.compat.proto.event_pb2 import SessionLog File "D:\anaconda\envs\pytorch\lib\site-packages\tensorboard\compat\proto\event_pb2.py", line 17, in <module> from tensorboard.compat.proto import summary_pb2 as tensorboard_dot_compat_dot_proto_dot_summary__pb2 File "D:\anaconda\envs\pytorch\lib\site-packages\tensorboard\compat\proto\summary_pb2.py", line 17, in <module> from tensorboard.compat.proto import tensor_pb2 as tensorboard_dot_compat_dot_proto_dot_tensor__pb2 File "D:\anaconda\envs\pytorch\lib\site-packages\tensorboard\compat\proto\tensor_pb2.py", line 16, in <module> from tensorboard.compat.proto import resource_handle_pb2 as tensorboard_dot_compat_dot_proto_dot_resource__handle__pb2 File "D:\anaconda\envs\pytorch\lib\site-packages\tensorboard\compat\proto\resource_handle_pb2.py", line 16, in <module> from tensorboard.compat.proto import tensor_shape_pb2 as tensorboard_dot_compat_dot_proto_dot_tensor__shape__pb2 File "D:\anaconda\envs\pytorch\lib\site-packages\tensorboard\compat\proto\tensor_shape_pb2.py", line 36, in <module> _descriptor.FieldDescriptor( File "D:\anaconda\envs\pytorch\lib\site-packages\google\protobuf\descriptor.py", line 561, in __new__ _message.Message._CheckCalledFromGeneratedFile() TypeError: Descriptors cannot not be created directly. If this call came from a _pb2.py file, your generated code is out of date and must be regenerated with protoc >= 3.19.0. If you cannot immediately regenerate your protos, some other possible workarounds are: 1. Downgrade the protobuf package to 3.20.x or lower. 2. Set PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python (but this will use pure-Python parsing and will be much slower).

293 浏览量
180 浏览量

class ConstrainedList (list): """Constrains the list class so it offers only the following primitive array API: - `lst[i]` for getting and setting a value at an *existing, positive* index `i` - `len(lst)` to obtain the number of slots - `lst.append(None)` to grow the list by *one slot at a time* - `del lst[len(lst)-1]` to delete the last slot in a list All other operations will result in an exception being raised. """ def __init__(self, *args): super().__init__(*args) def append(self, value): if value is not None: raise ValueError('Can only append None to constrained list!') super().append(value) def __getitem__(self, idx): if idx < 0 or idx >= len(self): raise ValueError('Can only use positive, valid indexes on constrained lists!') return super().__getitem__(idx) def __setitem__(self, idx, value): if idx < 0 or idx >= len(self): raise ValueError('Can only use positive, valid indexes on constrained lists!') super().__setitem__(idx, value) def __delitem__(self, idx): if idx != len(self)-1: raise ValueError('Can only delete last item in constrained list!') super().__delitem__(idx) def __getattribute__(self, name): if name in ('insert', 'pop', 'remove', 'min', 'max', 'index', 'count', 'clear', 'copy', 'extend'): raise AttributeError('Method "' + name + '" not supported on constrained list!') else: return super().__getattribute__(name) # __getattribute__ isn't called for special methods, so the following are needed def __add__(self, value): raise AttributeError('Constrained lists do not support `+`!') def __contains__(self, value): raise AttributeError('Constrained lists do not support `in`!') def __eq__(self, value): raise AttributeError('Constrained lists do not support `==`!') def __iter__(self): raise AttributeError('Constrained lists do not support iteration!') def __str__(self): raise AttributeError('Constrained lists do not support stringification!') def __repr__(self): raise AttributeError('Constrained lists do not support stringification!') # for testing only! (don't use this in your ArrayList implementation) def _as_list(self): return list(super().__iter__())

133 浏览量