光学小波与支持向量机在图像识别中的应用
需积分: 9 188 浏览量
更新于2024-09-14
收藏 133KB PDF 举报
"本文提出了一种基于光学小波和支持向量机的图像识别方法,针对图像识别中的非线性分类问题,通过光学小波提取图像特征,并利用支持向量机构建图像识别模型。实验中使用了包含9个类别的80张图像,以验证所提OWSVM方法的有效性,其识别精度达到了96.25%,而OWBPNN方法的识别精度为88%。"
在图像识别领域,通常涉及大量的数据分析和模式识别,对于非线性分类问题,传统的机器学习方法可能遇到挑战。光学小波和支持向量机的结合提供了一个强大的解决方案。光学小波分析是一种处理图像特征的工具,它能够对图像进行多尺度、多方向的分析,有效地提取出图像的局部特征和细节信息,这对于复杂背景下的目标识别至关重要。
支持向量机(Support Vector Machine, SVM)是一种监督学习模型,特别适用于小样本和高维空间的数据分类。在图像识别中,SVM通过构造最大边距超平面来划分不同类别的数据,确保模型具有较好的泛化能力。当与光学小波提取的特征相结合时,SVM可以更准确地构建图像识别模型,因为它能够处理非线性决策边界,并通过核函数技术将低维特征映射到高维空间,进一步提高分类性能。
实验部分,研究者使用了包含9个类别的80张图像,这表明该方法在多类别识别中的表现优秀。通过对比OWSVM方法与光学小波神经网络(OWBPNN)的识别精度,96.25%的准确率相对于88%的提升,证实了OWSVM在图像识别任务上的优越性。这一结果强调了结合光学小波和SVM的策略在处理复杂图像识别问题时的有效性和准确性。
基于光学小波和支持向量机的图像识别方法结合了两种技术的优点,能够更好地处理图像的非线性特性,从而提高识别效率和准确性。这种方法对于未来在生物医学成像、自动驾驶、监控系统等领域的应用具有重要的理论和实践价值。
点击了解资源详情
点击了解资源详情
点击了解资源详情
2021-02-10 上传
2021-02-10 上传
Decision fusion of sparse representation and support vector machine for SAR image target recognition
2021-02-09 上传
2021-02-09 上传
2021-02-21 上传
2021-02-10 上传
liuzhao_1988
- 粉丝: 0
- 资源: 7
最新资源
- capstone:投资组合风险分析脚本和仪表板
- ZDOG
- 精品--A resume template written in Markdown,Yaml JSON auto g.zip
- 100-Days-of-UIKit
- idlememstat:空闲内存大小监视器
- java版商城源码-Machi_Koro_Project:在Scrum工作过程中开发的项目
- 单片机msp430g2553中文教程.zip
- 精品--这是我初次使用LaTeX的一个简历模板,共享在此备用.zip
- MM32F0010 库函数和例程.rar
- SFF2FASTA:将SFF转换为FASTA的Python脚本
- rir360-c-header:用于C编程语言的rir360头文件
- EMSystem:ICS 4U0课程的员工管理系统
- c04-ch5-exercices-Jonathan-tsf:c04-ch5-exercices-Jonathan-tsf,由GitHub Classroom创建
- java版商城源码-senior-capstone:高级顶点
- 行业分类-设备装置-合成皮革用高光离型纸.zip
- 最佳农场