Diffusion Models: DDPM数学推导与图像生成算法分析
需积分: 0 149 浏览量
更新于2024-03-15
收藏 2.46MB PDF 举报
enoising Diffusion Probabilistic Models) model proposed in 2020, this article provides a detailed introduction to the principles of diffusion models. For the diffusion process, under the condition of satisfying the Markov chain, we use reparameterization techniques to prove that we can sample at any step based on the original data, and can express it using mathematical expressions. For the inverse diffusion process, we apply Bayesian formula and the properties of Gaussian distribution to mathematically derive the posterior distribution of the inverse diffusion process, and apply it to target optimization. In terms of target optimization, under the condition of known real data, we use maximum likelihood estimation to transform the model parameter estimation into log-likelihood estimation, combined with variational inference and KL divergence to transform maximizing log-likelihood into minimizing the variational lower bound problem. Through mathematical derivation, the original predicted mean is transformed into predicted noise, simplifying the model's target optimization. After obtaining the objective function, we complete the algorithm flow introduction of model design and provide training models. Finally, based on the diffusion model, we implemented code for unconditional image generation and conditional image generation, and analyzed the results. Keywords: DDPM, diffusion model, reparameterization technique, variational inference, KL divergence.
2023-03-06 上传
2021-03-06 上传
2021-03-19 上传
2021-05-22 上传
2021-05-30 上传
2021-05-26 上传
2021-05-27 上传
点击了解资源详情
Jerry---
- 粉丝: 19
- 资源: 1
最新资源
- C语言数组操作:高度检查器编程实践
- 基于Swift开发的嘉定单车LBS iOS应用项目解析
- 钗头凤声乐表演的二度创作分析报告
- 分布式数据库特训营全套教程资料
- JavaScript开发者Robert Bindar的博客平台
- MATLAB投影寻踪代码教程及文件解压缩指南
- HTML5拖放实现的RPSLS游戏教程
- HT://Dig引擎接口,Ampoliros开源模块应用
- 全面探测服务器性能与PHP环境的iprober PHP探针v0.024
- 新版提醒应用v2:基于MongoDB的数据存储
- 《我的世界》东方大陆1.12.2材质包深度体验
- Hypercore Promisifier: JavaScript中的回调转换为Promise包装器
- 探索开源项目Artifice:Slyme脚本与技巧游戏
- Matlab机器人学习代码解析与笔记分享
- 查尔默斯大学计算物理作业HP2解析
- GitHub问题管理新工具:GIRA-crx插件介绍